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Abstract

In this tutorial-overview we show how Knowledge Representation (KR)
can be done with the help of generalized logic programs. We start by
introducing the core of PROLOG, which is based on definite logic pro-
grams. Although this class is very restricted (and will be enriched by
various additional features in the rest of the paper), it has a very nice
property for KR-tasks: there exist efficient Query-answering procedures
— a Top-Down approach and a Bottom-Up evaluation. In addition we
can not only handle ground queries but also queries with variables and
compute answer-substitutions.

It turns out that more advanced KR-tasks can not be properly handled
with definite programs. Therefore we extend this basic class of programs
by additional features like Negation-as-Finite-Failure, Default-Negation,
Explicit Negation, Preferences, and Disjunction. The need for these ex-
tensions is motivated by suitable examples and the corresponding seman-
tics axe discussed in detail.

Clearly, the more expressive the respective class of programs under
a certain semantics is, the less efficient are potential Query-answering
methods. This point will be illustrated and discussed for every extension.
By well-known recursion-theoretic results, it is obvious that there do not
exist complete Query-answering procedures for the general case where
variables and function symbols are allowed. Nevertheless we consider it an
important topic of further research to extract feasible classes of programs
where answer-substitutions can be computed.
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1 Introduction

One of the major reasons for the success story (if one is really willing to call
it a success story) of human beings on this planet is our ability to invent tools
that help us improve our — otherwise often quite limited — capabilities. The
invention of machines that are able to do interesting things, like transporting
people from one place to the other (even through the air), sending moving
pictures and sounds around the globe, bringing our email to the right person,
and the like, is one of the cornerstones of our culture and determines to a great
degree our everyday life.

Among the most challenging tools one can think of are machines that are
able to handle knowledge adequately. Wouldn't it be great if, instead of the
stupid device which brings coffee from the kitchen to your office every day at
9.00, and which needs complete reengineering whenever your coffee preferences
change, you could (for the same price, admitted) get a smart robot whom you
can simply tell that you want your coffee black this morning, and that you need
an extra Aspirin since it was your colleague’s birthday yesterday? To react in the
right way to your needs such a robot would have to know a lot, for instance that
Aspirin should come with a glass of water, or that people in certain situations
need their coffee extra strong.

Building smart machines of this kind is at the heart of Artificial Intelligence
(Al). Since such machines will need tremendous amounts of knowledge to work
properly, even in very limited environments, the investigation of techniques for
representing knowledge and reasoning is highly important.

In the early days of Al it was still believed that modeling general purpose
problem solving capabilites, as in Newell and Simon’s famous GPS (General
Problem Solver) program, would be sufficient to generate intelligent behaviour.
This hypothesis, however, turned out to be overly optimistic. At the end of
the sixties people realized that an approach using available knowedge about
narrow domains wes much more fruitful. This led to the expert systems boom
which produced many useful application systems, expert system building tools,
and expert system companies. Many of the systems are still in use and save
companies millions of dollars per year”.

Nevertheless, the simple knowedge representation and reasoning methods
underlying the early expert systems soon turned out to be insufficient. Most of
the systems were built based on simple rule languages, often enhanced with ad
hoc approaches to model uncertainty. It became apparent that more advanced
methods to handle incompleteness, defeasible reasoning, uncertainty, causality
and the like were needed.

This insight led to a tremendous increase of research on the foundations
of knowledge representation and reasoning. Theoretical research in this area

"We refer the interested reader to the recent book [RNS5] which gives a very detailed and
nice exposition of what has been done in Al since its very beginning until today.






1 INTRODUCTION

has blossomed in recent years. Many advances have been made and important
results were obtained. The technical quality of this work is often impressive.

On the other hand, most of these advanced techniques have had surprisingly
little influence on practical applications so far. To a certain degree this is under-
standable since theoretical foundations had to be laid first and pioneering work
was needed. However, if we do not want research in knowledge representation to
remain a theoreticians’ game more emphasis on computability and applicability
seems to be needed. We strongly believe that the kind of research presented in
this tutorial, that is research aiming at interesting combinations of ideas from
logic programming and nonmonotonic reasoning, provides an important step
into this direction.

1.1 Some History

Historically, logic programs have been considered in the logic programming com:
munity for more than 20 years. It began with [CKPR73, Kow74, vEK76] and
led to the definition and implementation of PROLOG, a by now theoretically
well-understood programming language (at least the declarative part consisting
of Horn-clauses: pure PROLOG). Extensions of PROLOG allowing negative
literals have been also considered in this area: they rely on the idea of negation-
as-finite-failure, we call them Logic-Programming-semantics (or shortly LP-
semantics).

In parallel, starting at about 1980, Nonmonotonic Reasoning entered into
computer science and began to constitute a new field of active research. It
wes originally initiated because Knowledge Representation and Gommon-Sense
Reasoning using clcissical logic came to its limits. Formalisms like classical logic
are inherently monotonic and they seemto be too weak and therefore inadequate
for such reasoning problems.

In recent years, independently of the research in logic programming, people
interested in knowledge representation and nonmonotonic reasoning also tried
to define declarative semantics for programs containing default or explicit nega-
tion and even disjunctions. They defined various semantics by appealing to
(different) intuitions they had about programs.

This second line of research started in 1986 with the Workshop on the
Foundations of Deductive Databases and logic programming organized by Jack
Minker: the revised papers of the proceedings were published in [Min88]. The
stratified (or the similar perfect) semantics presented there can be seen as
a splitting-point: it is still of interest for the logic programming community
(see [CL8I]) but its underlying intuitions were inspired by nonmonotonic rea-
soning and therefore much more suitable for knowledge representation tasks.
Semantics of this kind leave the philosophy underlying classical logic program-
ming in that their primary aim is not to model negation-as-finite-failure, but to
construct new, more powerful semantics suitable for applications in knowledge
representation. Let us call such semantics NMR-semantics.






1.2 Non-Monotonic Formalisms in KR

Nowadays, due to the work of Apt, Blair and Walker, Fitting, Lifschitz,
Przymusinski and others, very close relationships between these two indepen-
dent research lines became evident. Methods from logic programming, e.g. least
fixpoints of certain operators, can be used successfully to define NMR-semantics.

The NMR-semantics also shed new light on the understanding of the classical
nonmonotonic logics such as Default Logic, Autoepistemic Logic and the various
versions of Circumscription. In addition, the investigation of possible semantics
for logic programs seems to be useful because

1 parts of nonmonotonic systems (which are usually defined for full predi-
cate logic, or even contain additional (modal)-operators) may be “imple-
mented” with the help of such programs,

2. nonmonotonicity in these logics may be described with an appropriate
treatment of negation in logic programs.

1.2 Non-Monotonic Formalisms in KR

As already mentioned above, research in nonmonotonic reasoning has begun at
the end of the seventies. One of the major motivations came from reasoning
about actions and events. John McCarthy and Patrick Hayes had proposed
their situation calculus as a means of representing changing environments in
logic. The basic idea is to use an extra situation argument for each fact which
describes the situation in which the fact holds. Situations, basically, are the
results of performing sequences of actions. It soon turned out that the problem
wes not so much to represent what changes but to represent what does not
change when an event occurs. This is the so-called frame problem. The idea
wes to handle the frame problem by using a default rule of the form

If aproperty P holds in situation S then P typically also holds in
the situation obtained by performing action A in S.

Given such a rule it is only necessary to explicitly describe the changes induced
by a particular action. All non-changes, for instance that the colour of the
kitchen wall does not change when the light is turned on, are handled implicitly.
Although it turned out that a straightforward formulation of this rule in some
of the most popular nonmonotonic formalisms may lead to unintended results
the frame problem was certainly the challenge motivating many people to join
the field.

In the meantime a large number of different nonmonotonic logics have been
proposed. Ve can distinguish four major types of such logics;

1 Logics using nonstandard inference rules with an additional consistency
check to represent default rules. Reiter’s default logic (see Appendix A.3)
and its variants are of this type.
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2. Nonmonotonic modal logics using a modal operator to represent consis-
tency or (dis-) belief. These logics are nonmonotonic since conclusions
may depend on disbelief. The most prominent example is Moore’s au-
toepistemic logic.

3. Circumscription (see Appendix A4) and its variants. These approaches
are based on a preference relation on models. A formula is a consequence
iff it is true in all most preferred models of the premises. Syntactically, a
second order formula is used to eliminate all non-preferred models.

4. Conditional approaches which use a non truth-functional connective
to represent defaults. A particularly interesting way of using such condi-
tionals was proposed by Kraus, Lehmann and Magidor. They consider p
as a default consequence of q iff the conditional g K p is in the closure of
a given conditional knowedge base under a collection of rules. Each of
the rules directly corresponds to a desirable property of a nonmonotonic
inference relation.

The various logics are intended to handle different intuitions about nonmono-
tonic reasoning in a most general way. On the other hand, the generality leads
to problems, at least from the point of view of implementations and applica-
tions. In the first order case the approaches are not even semi-decidable since
an implicit consistency check is needed. In the propositional case we still have
tremendous complexity problems. For instance, the complexity of determin-
ing whether a formula is contained in all extensions of a propositional default
theory is on the second level of the polynomial hierarchy. As mentioned ear-
lier we believe that logic programming techniques can help to overcome these
difficulties.

Originally, nonmonotonic reasoning wes intended to provide us with a fast
but unsound approximation of classical reasoning in the presence of incomplete
knowledge. Therefore one might ask whether the higher complexity of NMR-
formalisms (compared to classical logic) is not a real drawback of this aim? The
answer is that NMR-systems allow us to formulate a problem in a very compact
way as a theory T. It turns out that any equivalent formulation in classical logic
(if possible at all) as a theory T' is much larger: the size of T' is exponential
in the size of T! We refer to [GPSK95] and [CDS95a, CDSO5b, CDLS95] where
such problems are investigated.

1.3 How this Paper is organized

In this tutorial paper we show how Knowledge Representation can be done with
the help of generalized logic programs. W& start by introducing the core of
PROLOG, which is based on definite logic programs. Although this class is
very restricted (and will be enriched by various additional features in the rest of
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the paper), it haa a very nice property for KR-tasks: there exist efficient Query-
answering procedures—a Top-Down approach and a Bottom-Up evaluation. In
addition we can not only handle ground queries but also queries with variables
and compute answer-substitutions.

It turns out that more advanced KR-tasks can not be properly handled with
definite programs. Therefore we extend this basic class of programs by addi-
tional features like Negation-as-Finite-Failure, Default-Negation, Explicit Nega-
tion, Preferences, and Disjunction. The need for these extensions is motivated
by suitable examples and the corresponding semantics are also discussed.

Clearly, the more expressive the respective class of programs under a certain
semantics is, the less efficient are potential Query-answering methods. This
point will be illustrated and discussed for every extension. By well-known
recursion-theoretic results, it is obvious that there do not exist complete Query-
answering procedures for the general case where variables and function symbols
are alloned. Nevertheless we consider it an important topic of further research
to extract feasible classes of programs where answer-substitutions can be com
puted.
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2 Definite Logic Programs

In this section we consider the most restricted class of programs: definite logic
programs, programs without any negation at all. All the extensions of this basic
class we will introduce later contain at least some kind of negation (and perhaps
additional features). But here we also allow the ocurrence of free variables as
well as function symbols.

In Section 21 we introduce as a representative for the Top-Down approach
the SLD-Resolution. Section 2.2 presents the main competing approach of SLD:
Bottom-Up Evaluation. This approach is used in the Database community and
it is efficient when additional assumptions are made {finiteness-assumptions, no
function symbols). In Section 2.3 we consider the influence and appropriateness
of Herbrand models and their underlying intuition. Finally in Section 2.4 we
present and discuss two important examples in KR: Reasoning in Inheritance
Hierarchies and Reasoning about Actions. Both examples clearly motivate the
need of extending definite programs by a kind of default-negation “hot .

First some notation used throughout this paper. A language £ consists of
a set of relation symbols and a set of function symbols (each symbol has an
associated arity). Nullary functions are called constants. Terms and atoms are
built from £ in the usual way starting with variables, applying function symbols
and relation-symbols.

Instead of considering arbitrary £-formulae, our main object of interest is a
program:

Definition 2.1 (Definite Logic Program)
A definite logic program consists of afinite number of rules of the form

AtRi,..., Bm,

where A,Bi,..., Bm are positive atoms (containing possibly free variables). We
call A the head of the rule and B\,..., Bm Us bodly.

W& can think of a program as formalizing our knowledge about the world and
how the world behaves. Of course, we also want to derive new information,
i.e. we want to ask queries:

Definition 2.2 (Query)

Given a definite program we usually have a definite query in mind that we want
to be solved. A definite query Q is a conjunction of positive atoms Ci A... ACi
which we denote by

?- Ci,..., Ci.

These Ci may also contain variables. Asking a query Q to aprogram P means
asking for all possible substitutions O of the variables in Q such that QQ follows
from P. Often, O is also called an answer to Q. Note that QQ may still contain
free variables.
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Note that if a program P is given, we usually assume that it also determines
the underlying language £, denoted by £p, which is generated by exactly the
symbols ocurring in P. The set of all these atoms is called the Herbrand bese
and denoted by Bcp or simply Bp. The corresponding set of all ground terms is
the Herbrand universe. Another important notion that we are not explaining in
detail here is that of Unification. Given two atoms A and B with free variables
we can ask if we can compute two substitutions o i.o- for the variables such
that
Ao isidentical to Bo -,

or if we can decide that this is not possible at all. In fact, if the two atoms
are unifiable we can indeed compute a most general unifier, called mgU (see
[Lo87]). This will be important in our framework because if an atom appears
as a subgoal in a query, we may want to determine if there are rules in the
program whose heads unify with this atom.

How are our programs related to classical predicate logic? Of course, we
can map a program-rule into classical logic by interpreting as material
implication “D” and universally quantifying. This means we view such a rule
as the following universally quantified formula

BiA...ABm D A

However, as we will see later, there is a great difference: a logic program-rule
takes some orientation with it. This makes it possible to formulate the folloning
principle as an underlying intuition of all semantics of logic programs:

Principle 2.3 (Orientation)

If aground atom A does not unify with some head of aprogram rule of P, then
this atom is considered to befalse. In this case we say that 'hot A’ is derivable
from P to distinguish it from classical >A

2.1 Top-Down

SLD-Resolution is a special form of Robinson’s general Resolution rule. While
Robinson’s rule is complete for full first order logic, SLD is complete for definite
logic programs (see Theorem 2.5). We do not give a complete definition of
SLD-Resolution (see [LIo87]) but rather prefer to illustrate its behaviour on the
following example.

SL-resolution for Definite clauses. SL-resolution stands for Linear resolution with
Selection function.
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*r-p{x,h)

[xh]
“Success”

aixy).afy.u).p{ub)  "a{x,b)

a{x.y).afy.u).afuv).p{iv.o)  ajxy).afyb)  C

[¥a]
3 “Success”
a{x,a)
“Failure”

Figure 1, An Infinite SLD-Tree

Example 2.4 (SLD-Resolution)
Let the program Ps1d consist of the following three clauses

@ p{x2) a{x.y).piy.2)
(@ p(x.x)
@ ofab)

The query Q we are interested in is given by p(x,b). l.e. we are looking for
all substitutions O for x such that p{x,b)Q follows from P.

Figure 1 illustrates the behaviour of SLD-resolution. \\e start with our
query in the form  4- Q. Sometimes the notation 0 4—Q is also used, where
0 denotes the falsum. In any round the selected atom is underlined: numbers
1, 2 or 3indicate the number of the clause which the selected atom is resolved
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against. Obviously, there are three different sorts of branches, namely
1 infinite branches,
2. branches that end up with the empty clause, and
3. branches that end in a deadlock (“Failure’): no applicable rule is left.

In this example we always resolve with the last atom in the goal under consid-
eration. If we choose always the first atom in the goal, we will obtain, at least
in this example, a finite tree.

Definite programs have the nice feature that the intersection of all Herbrand-
models exists and is again a Herbrand model of P. It is denoted by Mp and
called the least Herbrand-model of P. Note that our original aim was to find
substitutions 0 such that QQ is derivable from the program P. This task as
well as Mp is closely related to SLD:

Theorem 2.5 (Soundness and Completeness of SLD)
The following properties are equivalent:

e P E=VQQ, ie. VQQ is true in all models of P,

. Mp =VQQ,
e SLD computes an answer t that subsumes™ Q wrt Q.

Note that not any correct answer is computed, only the most general one is
(which of course subsumes all the correct ones).

The main feature of SLD-Resolution is its Goal-Orientedness. SLD auto-
matically ensures (because it starts with the Query) that we consider only those
rules that are relevant for the query to be answered. Rules that are not at all
related are simply not considered in the course of the proof.

2.2 Bottom-Up

We mentioned in the last section the least Herbrand model Mp. The bottom-
up approach can be described as computing this least Herbrand model from
below. We start first with rules with empty bodies (in our example these are
all instantiations of rules (2) and (3)). We get as facts all atoms that are in the
heads of rules with empty bodies (namely p{a,a),p{b, b), fa, b) in Example 2.4).
In the next round we use the facts that we computed before and try to let the
rules “fire”, i.e. when their bodies are true, we add their heads to the atoms we
already have (this gives us p{a,b)).

To be more precise we introduce the immediate consequence operator Tp
which associates to any Herbrand model another Herbrand model.

N.e 3r: Qra = QQ.
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Example 2.6 (Tp)
Given a definite program P letTp : 2\ Ji—>Tp(2)

Tp{l) ;= {A€Bp : thereis an instantiation of a rule in P
s.t. A is the head of this rule and all
body-atoms are contained ini }

It turns out that Tp is monotone and continuous so that (by a general theorem
of Knaster-Tarski) the least fixpoint is obtained after wsteps. Moreover we have

Theorem 2.7 (Tp and Mp)
Mp =Tpr = Ifp{Tp).

This approach is especially important in Database applications, where the
underlying language does not contain function symbols (DATALOG) — this
ensures the Herbrand universe to be finite. Under this condition the iteration
stops after finitely many steps. In addition, rules of the form

pi-p

do not make any problems. They simply can not be applied or do not produce
anything new. Note that in the Top-Down approach, such rules give rise to infi-
nite branches! Later, elimination of such rules will turn out to be an interesting
property. e therefore formulate it as a principle:

Principle 2.8 (Elimination of Tautologies)

Suppose a program P has a rule which contains the same atom in its body as
well as in its head (i.e. the head consists of exactly this atom). Then we can
eliminate this rule without changing the semantics.

Unfortunately, such a bottom-up approach has two serious shortcomings.
First, the goal-orientedness from SLD-resolution is lost; we are always comput-
ing the whole Mp, even those facts that have nothing to do with the query.
The reason is that in computing Tp we do not take into account the query we
are really interested in. Second, in any step facts that are already computed
before are recomputed again. It would be more efficient if only new facts were
computed. Both problems can be (partially) solved by appropriate refinements
of the naive approach:

* Semi-naive bottom-up evaluation ([Bry90, UL18%]),
» Magic Sets techniques ([BRO1, U118%]).

2.3 Herbrand-Models and the underlying language

Usually when we represent some knowledge in first order logic or even in logic
programs, it is understood that the underlying language is given exactly by the
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symbols that occur in the formal theory. Suppose we have represented some
knowledge about the world as a theory T in a language £. Classical predicate
logic formalizes the notion of a formula () derivable from the theory T. This
means that 4~is true in all models of T (we denote this set by MOD(T)). Why
are we considering all models? Doesn't it make sense to look only at Herbrand
models, i.e. to models generated by the underlying language? After all we are
not interested in models that contain elements which are not representable as
terms in our language. These requirements are usually called Unique Names
Assumption and Domain Closure Assumption:

Definition 2.9 (UNA and DCA)
Let a language C be given. We understand by the Unique Names Assumption
the_restriction to those models T, where syntactically different ground C-terms
ti, l. are interpreted as nonidentical elements: if is not identical to if.

By the Domain Closure Assumption we mean the restriction to those models
I wherefor any element a inX there is a C-term t that represents this element:
a—th.

As an example, in Theorem 2.5 of Section 2.1 we referred to Mp, the least
Herbrand model of P. The reason that the first equivalence in this theorem
holds is given by the fact that for universal theories T and existential formulae
4>the following holds

MOD(T) I=(A iff HerbE-MOD(T) |= &

In our particular case, where T is a definite program P, we can even replace
Herb£-MOD(T) in the above equation by the single model Mp.

This last result does not hold in general. But what happens if we never-
theless are interested in only the Herbrand-models of a theory T (and therefore
automatically™ assume UNA and DCA)? At first sight one can argue that such
an approach is much simpler; in contrast to all models we only need to take care
about the very specific Herbrand models. But it turns out that determining the
truth of a formula in all Herbrand models is a much more complex task (namely
Hj-complete) than to determine if it is true in all models. This latter task is
also undecidable in general, but it is recursively enumerable, i.e. Hj-complete.
The fact that this task is recursively enumerable is the content of the famous
completeness theorem of Godel, where “truth of a formula in all models” is
shown to be equivalent to deriving this formula in a particular axiomatization
of the predicate calculus of first order. We refer to the appendix (Section A.l
and Section A.2) where the necessary notions are introduced.

But we have still a problem with Theorem 2.5 in our restricted setting:

“The only difference between Herbrand models and models satisfying UNA and DCA is
that the interpretation of terms is uniquely determined in Herbrand models. It is required
that a term “/(ti,. «.,/n)” is interpreted in a Herbrand model 1 s ..., tj)”.
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Example 2.10 (Universal Query Problem)
Consider the program P :=p{a), the query Q  p(x) and the empty substitution
0 :=e We hawe

« Mp £ Vxp(x)
* but SLD only computes the answer x/a.
Przymusinski called this the universal query problem.

There are essentially two solutions to avoid this behaviour: to use a language
which is rich enough (i.e. contains sufficiently many terms, not only those ocur-
ring in the program P itself) or to consider arbitrary models, not only Herbrand
modkels. Both approaches have been followed in the literature but they are be-
yond the scope of this paper.

2.4 Why going beyond Definite Programs?

So far we have a nice query-answering procedure, SLD-Resolution, which is goal-
oriented as well as sound and complete with respect to general derivability. But
note that up to now we are not able to derive any negative information. Not
even our queries allow this. From a very pragmatic viewpoint, we can consider
“not A" to be derivable if A is not. Of course, this is not sound with respect to
classical logic but it is with respect to Mp.

In KR we do not only want to formulate negative queries, we also want to
express default-statements of the form

Normally, unless something abnormal holds, then if implies 4>

Such statements were the main motivation for nonmonotonic logics, like Default
Logic or Circumscription (see Section A.3 and Section A.4 of the appendix).
How can we formulate such a statement as a logic program? The most natural
way is to use negation “noi ”

9§ > notab

where ab stands for abnormality. Obviously, this forces us to extend definite
programs by negative atoms.

A typical example for such statements occurs in Inheritance Reasoning. e
take the following example from [BGH]:

Example 2.11 (Inheritance Hierachies)

Suppose we know that birds typically fly and penguins are non-flying birds. e
also know that Tweety is a bird Now an agent is hired to build a cage for
Tweety. Should the agent put a roof on the cage? After all it could ke still the
case that Tweety is apenguin and therefore can not fly, in which case we would
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not like to pay for the unneccessary roof. But under normal conditions, it should
ke obvious that one should conclude that Tweety is flying.
A natural axiomatization is given as follows:

Anheritance « flies{x) - bird(x), not ab{ri,x)
bird{x) I-  penguin{x)
ab{ri,x) < penguin{x)
make-top{x) < flies{x)

together with some particular facts, like e.g. birdfTweety) and penguin{Sam).
The first rule formalizes our default-knowledge, while the third formalizes that
the default-rule should not be applied in abnormal or exceptional cases. In our
example, it expresses the famous Specificity-Principle which says that more spe-
cific knowledge should override more general one (JTHT86]).

For the query ‘make-top{Tweety)”’ we expect the answer “yes’” while for
‘inake-top{Sam)”’we expect the answer ‘ho”’

Another important KR task is to formalize knowledge for reasoning about
action. W\e again consider a particular important instance of such a task, namely
temporal projection. The overall framework consists in describing the initial
state of the world as well as the effects of all actions that can be performed.
What we want to derive is how the world looks like after a sequence of actions
has been performed.

Example 2.12 (Temporal Projection: Yale-Shooting Problem)
We distinguish between three sorts™ of variables:

« situation variables: S, S’,...,
« fluent variables: F,F',...,
action variables: A, A

The initial situation is denoted by the constant Sy and the two-ary function
symbol res{A,S) denotes the situation that is reached when in situation S the
action A has been performed. The relation symbol holds{F,S) formalizes that
the fluent F is true in situation S.

For the YSP there are three actions (wait, load and shoot) and two fluents
(alive and loaded). Initially a turkey called Fred is alive. We then load a gun,
wait and shoot. The effect should ke that Fred is dead after this sequence of
actions. The common-sense argument from which this should follow is the

Law of Inertia: Things normally tend to stay the same.*

*To be formally correct we have to use -sorted logic. But since all this could also be
coded in predicate logic by using additional relation symbols, we do not emphasize this fact.
W& also understand that instantiations are done in such a way that the sorts are respected.
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Using our intuition from the last example, a natural formalization is given as
follows:

Pysp I holds{F,res{A,S o holds{F,S), not ab{ri. A, F,S)
7o R Sieoareet restloed, )

ab(ri, shoat, alive, S) < holds{loaded, S)

holds{alive, &9 <

Such a straightforward formalization leads in most versions of classical non-
monotonic logic to the unexpected result, that Fred is not neccesarily dead. But
obviously we expect to derive holds{alive,res{load, sq)) and

not holds{alive , res{shoot,res{wait,res{load, so))))

Up to now we only have stated some very “natural” axiomatizations of given
knowmedge. We have motivated that something like default-negation “noi ”
should be added to definite programs in order to do so and we have explicitly
stated the answers to particular queries. What is still missing are solutions to
the following very important problems

* How should an appropriate query answering mechanism handling default-
negation fiot ” look like?

» What is the formal semantics that such a procedural mechanism should ke
checked against?

Such a semantics is certainly not classical predicate logic because of the default
character of “hot ””—not is not classical  Both problems will be considered
in detail in Section 3

25 What is a Semantics?

In the last subsections we have introduced two principles (COrientation and Elim-
ination of Tautologies) and used the term semantics of a program in a loose,
imprecise way. VWe end this section with a precise notion of what we understand
by a semantics.

As a first attempt, we can view a semantics as a mapping that associates
to any program a set of positive atoms and a set of default atoms. In the case
of SLD-Resolution the positive atoms are the ground instances of all derivable
atoms. But sometimes we also want to derive negative atoms (like in our two
examples above). Our Orientation-Pnnciple formalizes a minimal requirement
for deriving such default-atoms.

Of course, we also want that a semantics SEM should respect the rules of P,
1.e. whenever SEM makes the body of a rule true, then SEM should also make
the head of the rule true. But it can (and will) happen that a semantics SEM
does not always decide all atoms. Some atoms A are not derivable nor are their
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default-counterparts not A. This means that a semantics SEM can view the
body of a rule as being undefined.
This already happens in classical logic. Take the theory

T := {{ANB) DC, -A p B}.

What are the atoms and negated atoms derivable from T, i.e. true in all mod-
els of T? No positive atom nor any negated atom is derivable! The classical
semantics therefore makes the truthvalue oi A A B undefined in a sense.

Suppose a semantics SEM treats the body of a program rule as undefined.
What should we conclude about the head of this rule? WWe will only require that
this head is not treated as false by SEM —it could be true or undefined as well.
This means that we require a semantics to be compatible with the program
viewed as a 3-valued theory — the three values being “true”, “false” and “un-
defined”. For the understanding it is not neccessary to go deeper into 3-valued
logic. W\e simply note that we interpret as the Kleene-connective which is
true for “Undefined <—undefined" and false for “false £—undefined".

Our discussion shows that we can view a semantics SEM as a 3-valued model
of a program. In classical logic, there is a different viewpoint. For a given theory
T we consider there the set of all classical models MOD(T) as the semantics. The
intersection of all these models is of course a 3-valued model of T, but MOD(T)
contains more information. In order to formalize the notion of semantics as
general as possible we define

Definition 2.13 (SEM)

A semantics SEM is a mapping from the class of all programs into the powerset
of the set of all 3-valued structures. SEM assigns to every program P a set of
3-valued models of P:

SEM{P) C MODF:MfiP).

This definition covers both the classical viewpoint (classical models are 2-
valued and therefore special 3-valued models) as well as our first attempt in the
beginning of this subsection. Later on, in most cases we will be really interested
only in Herbrand models.

Formally, we can associate to any semantics SEM in the sense of Defini-
tion 2.13 two entailment relations

sceptical: SEM’“®*(P) is the set of all atoms or default atoms that are true
in all models of SEM(P).

credulous: SEM#\(P) is the set of all atoms or default atoms that are true
in at least one model of SEM(P).

In this tutorial we only consider the sceptical viewpoint. Also, to facilitate
notation, we will not formally distinguish between SEM and In cases
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where by definition SEM can only contain a single model (like in the case of
well-founded semantics) we will omit the outer brackets and write

SEM(P) = M

instead of SEM(P) = M. We will also slightly abuse notation and write | £
SEM(P) as an abbreviation for / £ M for all M £ SEM(P).
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3 Adding Default-Negation

In the last section we have illustrated that logic programs with negation are
very suitable for KR —they allow a natural and straightforward formalization
of default-statements. The problem still remained to define an appropriate se-
mantics for this class and, if possible, to find efficient query-answering methods.
Both points are adressed in this section.

W& can distinguish between two quite different approaches:

LP-Approach: This is the approach taken mainly in the Logic Programming
community. There one tried to stick as close as possible to SLD-Resolution
and treat negation as “Finite-Failure”. This resulted in an extension of
SLD, called SLDNF-Resolution, a procedural mechanism for query an-
swering. For a nice overview, we refer to [ABH].

NML-Approach: This is the approach suggested by non-monotonic reason-
ing people. Here the main question is “What is the right semantics?”
l.e. we are looking first for a semantics that correctly fits to our intuitions
and treats the various KR-Tasks in the right (or appropriate) way. It
should allow us to jump to conclusions even when only little information
is available. Here it is of secondary interest how such a semantics can be
implemented with a procedural calculus. Interesting overviews are [Min93]
and [Dix95c].

The LP-Approach is dealt with in Section 3.1. It is still very near to clas-
sical predicate logic — default negation is interpreted as Finite-Failure. To get
a stronger semantics, we interpret “not ” as Failure in Section 32. The main
difference is that the principle Elimination of Tautologies holds. e then intro-
duce a principle GPPE which is related to partial evaluation. In KR one can see
this principle as allowing for definitional extensions — names or abbreviations
can be introduced without changing the semantics.

All these principles do not yet determine a unique semantics — there is
still room for different semantics and a lot of them have been defined in the last
years. Ve do not want to present the whole zoo of semantics nor to discuss their
merits or shortcomings. e refer the reader to the overview articles [AB94] and
[Dix95c] and the references given therein. We focus on the two main competing
approaches that still have survived. These are are the Wellfounded semantics
WES (Section 3.3) and the Stable semantics STABLE (Section 3.4). Finally,
in Section 3.5 we discuss complexity and expressibility results for the semantics
presented so far.

3.1 Negation-as-Finite-Failure

The idea of negation treated as finite-failure can be best illustrated by still con-
sidering definite programs, but queries containing default-atoms. How should
we handle such default-atoms by modifying our SLD-resolution? Let us try this:
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* If we reach a default-atom “noi A" as a subgoal of our original query, we
keep the current SLD-tree in mind and start a new SLD-tree by trying to
solve “A”.

* If this succeeds, then we falsified “not A"\ the current branch is failing
and we have to backtrack and consider a different subquery.

* But it can also happen that the SLD-tree for “A”is finite with only failing
branches. Then we say that A finitely fails, we turn back to our original
SLD-tree, consider the subgoal “hot A as successfully solved and go on
with the next subgoal in the current list.

It is important to note that an SLD-tree for a positive atom can fail without
being finite. The SLD-tree for the program consisting of the single rulep p
with respect to the query p is infinite but failing (it consists of one single infinite
branch). In Figure 1the leftmost branch is also failing but infinite.

Although this idea of Finite-Failure is very procedural in nature, there is
a nice modeltheoretical counterpart — Clark’s completion comp{P) ([Cla78]).
The idea of Clark wes that a program P consists not only of the implications,
but also of the information that these are the only ones. Roughly speaking, he
argues that one should interpret the “* ”-arrows in rules as equivalences “=”
in classical logic. Ve do not give the exact definitions here, as they are very
complex; in the non-propositional case, a symbol for equality, together with
axioms describing it® has to be introduced. However, for the propositional
case, comp{P) is obtained from P by just

1 collecting all given clauses with the same head into one new “clause” with
this respective head and a disjunctive body (containing all bodies of the
old clauses), and

2. replacing the implication-symbols “4- by

Definition 3.1 (Clark’s Completion comp{P))
Clark’s semantics for aprogram P is given by the set of all classical models of
the theory comp{P).

W& can now see the classical theory comp{P) as the information contained in
the program P. comp{P) is like a sort of closed world assumption applied to
P. We are now able to derive negative information from P by deriving it from
comp{P). In fact, the folloning soundness and completeness result for definite
programs P and definite queries Q = f\iAi (consisting of only positive atoms)
holds:

@®CET: Clark’s Equational Theory. CET(£p) axiomatizes the equality theory of all
Herbrand(£p)-models. See [MIMP88, SheB884] for the problem of equality and the underlying

language.
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Theorem 3.2 (COMP and Fair FF-Trees)
The following conditions are equivalent:

» comp{P) = V-HQ
* Every fair SLD-tree for P with respect to Q is finitely failed.

Note that in the last theorem we did not use default negation but classical
negation  because we just mapped all formulae into classical logic. Ve need
the fairness assumption to ensure that the selection of atoms is reasonably well-
behaving: we want that every atom or default-atom occurring in the list of
preliminary goals will eventually be selected.

But even this result is still very weak — after all we want to handle not
only negative queries but programs containing default-atoms. From now on we
consider programs with default-atoms in the body. We usually denote them by

A 4- B¥ Anot B~,

where  contains all the positive body atoms and not B~ all default atoms
“hot C”’.

Our two motivating examples in Section 24 contain such default atoms.
This gives rise to an extension of SLD, called SLDNF, which treats negation as
Finite-Failure

SLDNF = SLD + not L succeeds, if L finitely fails.

The precise definitions of SLDNF-resof/itieon, tree, etc. are very complex: we re-
fer to [L1o87, Apt90]. Recently, Apt and Bol gave interesting improved versions
of these notions: see [ABH4, Section 3.2]. In order to get an intuitive idea, it is
sufficient to describe the folloming underlying principle:

Principle 3.3 (A “Naive” SLDNF-Resolution)

If in the construction of an SLDNF-tree a default-atom not Lij is selected in
the list Li —{Lii,l/j-,...}, then we try to prove Lij.

If this fails finitely (it fails because the generated subtree is finite and failing),
then we take not Lij as proved and we go on to prove

If Lij succeeds, then not Lij fails and we have to backtrack to the list. : of
preliminary subgoals (the next rule is applied: “backtracking’).

Does SLDNF-Resolution properly handle Examples 2.11 and 2.12? It does
indeed:
Inheritance: The query makeJtopiTweety) generates an SLD-tree with one
main branch, the nodes of which are:

flies{Tweety),

birdiTweety), not ab{ri,Tweety),
not ab{ri, Tweety),

Success.
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The third node has a sibling-node penguin{Tweety), not ab{ri, Tweety)
which immediately fails because Tweety does not unify with Sam. The
Success-node is obtained from not ab{ri, Tweety) because the correspond-
ing SLD-tree for ab{ri,Tweety) fails finitely (this tree consists only of
ab{ri, Tweety) and penguin{Tweety)).

YSP: The crucial query is
?- not holds{alive , res{shoot,res{wait,res{load, 39)))).

Sowe consider ?- holds{alive, res{shoot,res{wait,res{load,so)))). Again
the SLD-tree for this query consists mainly of one branch: the nodes are
obtained from the query by applying successively the first program rule
{law of inertia). By evaluation of the holds-predicate, we eventually ar-
rive at the fact holds{alive, sq) and the "ot ab’ predicates remain to
be solved. For any of these predicates we again have to consider sepa-
rate SLD-trees. But for ab{ri, shoot, alive,res{wait,res{load, so))) it is
easy to see that the associated tree already finitely fails (because it gener-
ates the subgoal "not ab{ri, wait, loaded, res{load,s0))”” the correspond-
ing SLD-tree of which immediately finitely fails) and therefore, since no
backtracking is possible, the tree for

?- holds{alive, res{shoot,res{wait,res{load,so))))

finitely fails and our original query succeeds: Fred is dead.

Up to now it seems that SLDNF-resolution solves all our problems. It han-
dels our examples correctly, and is defined by a procedural calculus strongly
related to SLD. There are two main problems with SLDNF:

» SLDNF can not handle free variables in negative subgoals,
» SLDNF is still too weak for Knowledge Representation.

The latter problem is the most important one. By looking at a particular
example, we will motivate in Section 3.2 the need for a stronger semantics.
This will lead us in the remaining sections to the wellfounded and the stable
semantics.

For the rest of this section we consider the first problem, known as the
Floundering Problem. This problem will also occur later in implementations
of the wellfounded or the stable semantics. Ve consider the program Pfiounder
consisting of the three facts

p{c.c), o). r{f{c)).

Our query is ? —p{x,c),not g{x),r{f{x)), that is, we are interested in instan-
tiations of X such that the query follows from the program. The situation is
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<= pX. 9, -q(9). rGY) <~ p(x,0), ~q(x), r(F{))
I otest = o
< -q(©), r(f(©))
SUOOESS
} test <— q(©) ()db)
SUOESS fail Fail
r(f(c))

Figure 2 The Floundering-Problem

illustrated in Figure 2 Let us suppose that we always select the first atom or
default-atom: it is underlined in the sequel. The SLDNF-tree of this trivial
example is linear and haa three nodes: the first node is the query itself

?2- pjx,c), not g{x),r{f{x)),

the second node is ? —not g{c),r{f{c)). Now, we enter the negation-as-failure
mode and ask ?—g(c). This query immediately fails (the generated tree exists, is
finite and fails) so that we give back the answer “yes, the default atom not gfc)
succeeds and can be skipped from the list”. The last node is ? —(/(c)) which
immediately succeeds.

Note that in the last step, the test for ? —efc) has to be finished before the
tree can be extended. If we get no answer, the SLDNF-tree simply does not
exist: this can not happen with SLD-trees.

So far everything was fine. But what happens if we select the second atom

in 'the first step
?- p{x, ¢),not gfx), r{f{x))?

Example 3.4 (Floundering)
W\ again consider the program P/iounder consisting of the three facts

p(c.c), alb), r{Hc)).

Qur query is ?—p{x,c), not g{x),r{f{x)), and in the first step we will select the
second default-atom, i.e. one with afree variable. Thus we enter the negation-
as-failure mode with the query ?—not gfX). In this case, x may ke instantiated
to b so that we have to give back the answer ‘ho, the default-atom not g{X)
fails” and the whole query will fail. This is because SLDNF treats the sub-
goal as “ixnot gfx)” instead of ‘Sxnotg{x)”” which is intended. There exist
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approaches to overcome this shortcoming by treating negation as constructive
negation; see [Cha88, CW89, Dra]-

In the classical SLDNF-resolution negation-as-finite-failure is only a test, no
bindings are produeed. On the one hand this may be considered a shortcoming,
on the other hand, it makes the SLDNF procedure more tractable. Note that
the problem to decide if a given program flounders is undecidable [Bor87]). See
also [She91] for more unsolvable problems related to SLDNF.

SLDNF is a procedural mechanism. It would be nice to have a modeltheoret-
ical counterpart. In Theorem 3.2 we already related a restricted form of finite
failure to Clark’s completion. We will see later that comp{P) is inconsistent
even in cases where we would not expect it. Therefore Fitting [Fit85] intro-
duced a three-valued formulation comp: {P) of the original completion. Kunén
([Kun87]) then proved in the propositional case SLDNF is sound and complete
with respect to compz{P).

In the predicate logic case, SLDNF is not complete but it is always cor-
rect [Shes s b, Theorem 39]) with respect to compz{P): given a query Q,

* if SLDNF succeeds with answer 0, then compz{P) (-s VQO, and
* if SLDNF fails, then compz{P) -5 -BQ.

This correctness result is also the reason for the incompleteness of SLDNF with
respect to two-valued comp{P). It states that any formula derivable by SLDNF
is a three-valued consequence of compz{P). But, since there are two-valued
consequences of a theory that are not three-valued ones (three-valued logic is
weaker than two-valued logic), SLDNF can not be complete. Extensions of
the above completeness result to certain subclasses of predicate logic programs
require severe restrictions on the syntactic form of P. To define these syntactic
restrictions, we need the notion of the dependency-graph:

Definition 3.5 (Dependency-Graph Qp)
For a logic program P with negation, the dependency graph Qp is afinite di-
rected graph whose vertices are the predieate symbols from P. There is apositive
(respectively negative” edge from R to R' iff there is a elause in P with R in
its head and R" oecurring positively (respectively negative) in its body.

We also say

* R depends on R if there is a path in Qo from R to R" (by definition, R
depends on itself),

* R depends positively (resp. negatively™ on R' if there is a path in Qp
from R to R' containing only positive edges (resp. at least one negative
edge), (by definition R depends positively on itself),e

* R depends evenly (resp. oddly™ on R if there is a path in Qp from R to
R' containing an even (resp. odd) number of negative edges (by definition
R depends evenly on itself).
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Prog. P Semantics  Completeness

alloned -f hierarchical ~ comp{P) yes, no recursion at all
alloned -h stratified comp{P) yes, if P U {t—=1} strict
alloned compsiP) yes, W.r.t. |s

alloned -- call-consistent  compfP) yes, if P U{t—A} strict:
comp(P) h VA iff
CompZ{P) 13 VA

Table 1 Completeness for SLDNF

The folloming properties of a program P turn out to be very important:

stratified: no predicate depends negatively on itself®,
strict: there are no dependencies that are both even and odd,
call-consistent: no predicate depends oddly on itself®,
allonedness: every variable occurring in a clause must occur in

at least one positive atom of the body of that clause.

Strictness and allowedness turn out to be the most important restrictions that
imply completeness results for SLDNF:

While strictness excludes situations of the formp(a;) <—{x),p{c) < -'a{f{c"),
allonedness excludes constructs of the form equal{x,x) <—and also solves the
floundering-problem.

Strictness implies that comp: {P) and comp{P) axe equivalent [Kun89])

compz{P) ~-s VQO iff comp{P) |= VQO.

Table 1 gives an overview of the different completeness results. Note that the
query A is always considered to be allowed.

Much work wes done in LP (see [DC90, BVk s, Sta94]) to find other syntac-
tically characterizable classes, for which SLDNF is also complete.

3.2 Negation-as-Failure

Let us first illustrate that SLDNF answers quite easily our requirements of a
semantics SEM (stated explicitly in Definition 2.13). We can formulate these

7or: there are no cycles containing at least one edge.
@ there are no odd cycles.
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requirements as two program-transformations (they will be used later for com-
puting a semantics). Ve call them Reductions for obvious reasons.

Principle 3.6 (Reduction)

Suppose we are given a program P with possibly default-atoms in its body. If

aground atom A does not unify with any head of the rules of P, then we can

delete in every rule any occurrence of 'hot A ’without changing the semantics.
Dually, if there is an instance of a rule of the form ‘B ” then we can

delete all rules that contain 'hot B’ in their bodies.

It is obvious that SLDNF “implements” these two reductions automatically.
The weakness of SLDNF for Knowledge Representation is in a sense inherited
from SLD. When we consider rules of the form “p t- p”’, then SLD resolution
gets into an infinite loop and no answer to the query - p can be obtained. This
has often the effect that when we enter into negation-as-failure mode, the SLD-
tree to be constructed is not finite, although he is not successful and therefore
should be considered as failed.
Let us discuss this point with a more serious example.

Example 3.7 (The Transitive Closure)

Assume we are given a graph consisting of nodes and edges between some of
them. We want to know which nodes are reachable from a given one. A natural
formalization of the property ‘teachable’” would ke

reachable(x) t—edge{x,y),reachable{y).
What happens if we are given the following facts

edge{a,b), edge{b,a), edge{c,d)

and reachable(c) ? Of course, we expect that neither a nor b are reachable be-
cause there is no path from c to either a or b
But SLDNF-Resolution does not derive 'hot reachable{a) "1

How does this result relate to Theorem 3.2? Note that our query has exactly
the form as required there. Clark’s completion of our program rule is

reachable{x) = (i = ¢ V 3y {reachable{y) A edge{y,x)))

from which, together with our facts about the edge-relation, ~reachable{a) is
indeed not derivable. This is due to the wellknown fact that transitive closure
is not expressible in first order predicate logic.

Note also that our Principle 2.8 does not help, because it simply does not
apply. It turns out that we can augment our two principles by a third one, that
constitutes together with them a very nice calculus handling the above example
in the right way. This principle is related to Partial Evaluation, hence its
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name GPPE®. Let us motivate this principle with the last example. The query
“hot reachable(a)”” leads to the rule “reachable{a) t—edge{a,b),reachable{b)”
and “reachable{b)” leads to ‘reachable{b) <—edge(b,a),reachable{a)\ Both
rules can be seen as definitions for reachable{a) and reachable{b) respectively.
So it should be paossible to replace in these rules the body atoms of reachable
by their definitions. Thus we obtain the two rules

reachable{a) i—edge{a,b),edge{b,a),reachable{a)
reachable(b) <+ edge{b,a),edge{a,b),reachable{b)

that can both be eliminated by applying Principle 2.8. So we end up with a
program that does neither contain reachable{a) nor reachable{b) in one of the
heads. Therefore, according to Principle 2.3 both atoms should be considered
false. The precise formulation of this principle is as follows:

Principle 3.8 (GPPE)

We say that a semantics SEM satisfies GPPE, if the following transformation
does not change the semantics. Replace a rule A - A not B~ where B*
contains a distinguished atom B by the rules

(AL t- {B+\{B))\jBt A not {B-GB-) (G=1,...,n)
where Ai - Bf Anot B~ (i =1,...,n) are all the rules with B £ Ai.

Note that any semantics SEM satsfying GPPE and Elimination of Tautolo-
gies can be seen as extending SLD by doing some Loop-checking. WWe will call
such semantics NMR-semantics in order to distinguish them from the classi-
cal LP-semantics which are based on SLDNF or variants of Clark’s completion
comp{P):

* NMR-Semantics — SLDNF H Loop-check.
The following, somewhat artificial example illustrates this point.
Example 3.9 (COMP vs. NMR)

Pnmrt P < p RNMR| p < P
qg < notp q not p
r f— notr
comp{PNMR)® p = P cympfPAMR)1 P+ P
g = P g = P
r = -ir
70 No (COMP). ?-p:  Yes (COMP)
Yes (NMR). No (NMR).

®Ceneralized Principle of Partial Evaluation
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For both programs, the answers of the completion-semantics do not match our
NMR-intuition! In the case of Pnmr We expect q to ke derivable, since we
expect not p to ke derivable: the only possibility to derive p is the rulep p
which, obviously, will never succeed. But g * Th{{q = ~p}) = comp{P)\IMR)!
In the case of We expect p not to ke derivable, for the same reason: the
only possibility to derive p is the rule p +p. Butp € Fml =Th{{r = “T} =
“*"Rite that the answers of the completion-semantics agree with the mechanism
of SLDNF: p  p represents a loop. The completion of P' is inconsistent: this
led Fitting to consider the three-valued version of comp{P) mentioned at the end
of Section 3.1. This approach avoids the inconsistency (the query ? —p is not
answered “§es™) but it still does not answer “ho”” as we would like to have.

The last principle in this section is related to Subsumption: we can get rid
of non-minimal rules by simply deleting them.

Principle 3.10 (Subsumption)
In aprogram P we can delete arule A #—  Anot B~ whenever there is another
rule Ai- B Anot B'~ with

B CB+ andB'~ C/?-.

As a simple example, the rule A < B,C, not D, not E is subsumed by the 3
rules At—C, not D,not Eor Ai- B,C,not Eand by A C, not E.

3.3 The Wellfounded Semantics: WFS

The wellfounded semantics, originally introduced in [VGRS88], is the weakest
semantics satisfying our 4 principles (see [BD95a, Dix95b]). We call a semantics
SEMi weaker than SEM, if for all programs P and all atoms or default-atoms
| the following holds: SEMI(P) = I implies SEM: (P) \=1 le. all atoms
derivable from SEMi with respect to P are also derivable from SEM:. This is
a nice theorem and gives rise to the folloming definition:

Theorem 3.11 (WFS)

There exists the weakest semantics satisfying our four principles Elimination
of Tautologies, Reduction, Subsumption and GPPE. This semantics is called
wellfounded semantics WFS.

It can also be shown, that for propositional programs, our transformations can
be applied to compute this semantics.

Theorem 3.12 (Confluent Calculus for WFS)

The calculus consisting of these four transformations is confluent, i.e. whenever
we arrive at an irreducible program, it is uniquely determined. The order of the
transformations does not matter.
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For finite propositional programs, it is also terminating: any program P is
therefore associated a unique normalform res{P). The wellfounded semantics
of P can he read off from res{P) as follows

WFS{P) —{A: A Gres{P)} U{not A : A is in no head of res{P)}

Therefore the wellfounded semantics associates to every program P with nega-
tion a set consisting of atoms and default-atoms. This set is a 3-valued model of
P. It can happen, of course, that this set is empty. But it is always consistent,
l.e. it does not contain an atom A and its negation not A. Moreover, it extends
SLDNF: whenever SLDNF derives an atom or default-atom and does not floun-
der, then WFS derives it as well. Therefore the two examples of Section 2.4 are
handled in the right way. But also for Example 3.7 we get the desired answers.

As we said above, loop-checking is in general undecidable. Therefore WFS
is in the most general case where variables and function-symbols are allowed,
undecidable. Only for flnite propositional programs it is decidable. In fact, it is
of quadratic complexity (see Section 3.5).

Let us end this section with another example, which contains negation.

Example 3.13 (Van Gelder’s Example)
Assume we are describing a two-players game like checkers. The two players
alternately move astone on a board. The moving player wins when his opponent
has no more move to make. We can formalize that by

* wins(x) G move-from-to(x,y), not wins(y)
meaning that

» the situation x is won (for the moving player A), if he can lead oveP” to
a situation y that can never be won for B.

Assume we also have the facts move.fromJ,o{a,h), move.frcnnJo{b,a) and
move.frcmi-tof{b,c). Our query to this program Pgare is ?- wins{b). Here we

have no problems with floundering, but using SLDNF we get an infinite sequence
of oscillating SLD-trees (none of which finitely fails).

WFS, however, derives the right results
wrs{pgame) —{not wins{c),wins{b), not wins{a)}
which matches completely with our intuitions.

*®W\ith the help of a regular move, given by the relation move-from.tog,).
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3.4 The Stable Semantics: STABLE

We defined WFS as the weakest semantics satisfying our four principles. This
already indicates that there are even stronger semantics. One of the main
competing approaches is the stable semantics STABLE. The stable semantics
associates to any program P a set of 2-valued models, like classical predicate
logic. STABLE satisfies the folloming property, in addition to those that have
been already introduced:

Principle 3.14 (Elimination of Contradictions)
Suppose a program P has a rule which contains the same atom A and not A in
its body. Then we can eliminate this rule without changing the semantics.

This principle can be used, in conjunction with the others to define the stable
semantics

Theorem 3.15 (STABLE)

There exists the weakest semantics satisfying our five principles Elimination
of Tautologies, Reduction, Subsumption, GPPE and Elimination of Contradic-
tions.

If a semantics SEM satisfies Elimination of Contradictions it is based on 2-
valued models ([BD95b]). The underlying idea of STABLE is that any atom in
an intended model should have a definite reason to be true or false. This idea
was made explicit in [BF91a, BFI1b] and, independently, in [Glss]. We use
the latter terminology and introduce the Gelfond-Lifschitz transformation: for
a program P and a model N C Bp we define

P~ :={rule” : rule EP}
where rule :=A i- Bi,..., Bn,not C\, Inot Om is transformed as follons

Bi,...,Bn, ii'"j-.Cj”N,

{rule)* =1 # otherwise.

Note that P is always a definite program. e can therefore compuite its least
Herbrand model MpN and check whether it coincides with the model N with
which we started:

Definition 3.16 (STABLE)
N is called a stable modeU" of P iff MpN =N.

What is the relationship between STABLE and WFS? We have seen that
they are based on rather identical principles.

* Stable models N extend WFS: | EWFS(P) implies N \=1.
Note that we only consider Herbrand models.
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o If WFS(P) is two-valued, then WFS(P) is the unique stable model.

But there are also differences. We refer to Example 3.13 and consider the
program P consisting of the clause

wins{x) t—move-fromJ,o(x,y), not wins{y)

together with the follonming facts: move.from-to{a,b), Tnove-fromJo{b,a), as
wWell as move-fromJo{b,c), and move.from-to{c,d). In this particular case
we have two stable models: {iwins(a), wins{c)} and {wins{b), wins{c)} and
therefore

WFS(P) = {wins{c), not wins{d)} = P| A
A" a stable model of P

This means that the 3-valued wellfounded model is exactly the set of all atoms
or default-atoms true in all stable models. But this is not always the case, as
the program of PspltUng shows:

Example 3.17 (Reasoning by cases)

Bsplitting a not b
b < nota
P < a
pf- Db

Although neither a, nor b can be derived in any semantics based on two-valued
models (as STABLE for example), the disjunction aV b, thus also p, is true.
In this way the example is handled by the completion semantics, too. WFS(P),
however, is empty; If the WPS cannot decide between a or not a, then a is
undefined.

The main differences between STABLE and WFS are

» STABLE is not always consistent,

» STABLE does not allow for a goal-oriented implementation.
The inconsistency comes from odd, negative cycles

STABLE{p < notp) = 0.

The idea to consider 2-valued models for a semantics neccessarily implies its
inconsistency ([BD95b]). Note that WFS{p t—not p) ~ {0} which is quite
different!  Sufficient criteria for the existence of stable models are contained
in [Dun92, Fag93].

That STABLE does not allow for a Top-Down evaluation is a more seri-
ous drawback and has nothing to do with inconsistency. This behaviour led
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Dix to define the notion of Relevance and Modularity (see Section 7.1 and
[Dix92a, Dix92b, Dix95b]. Recently, Bry reinvented Modularity (he termed
it compositionality) and argued that a semantics should satisfy it.

Example 3.18 (STABLE is not Goal-Oriented)

refa) a < notbh P: a < notb

b t— nota b < nota
P < notp
P < a
Prei{a) Subprogram of P that consists of all rules that are relevant to

answer the query ?- a. It has two stable models {a} and {& —a is not true in
all of them. But the program P has the unique stable model {p,a}, so a is true
in all stable models of P.

The last example shows that the truthvalue of an atom a also depends on atoms
that are totally unrelated with a! This is considered a drawback of STABLE
by many people. Note that a straightforward modification of STABLE is not
possible ([DIVI94b, DIM94c]).

Wk end this section with another description of WFS and STABLE that will
be useful in later sections. It wes introduced in [BS91, BS92]:

Definition 3.19 (Antimonotone Operator Jp)
For aprogramP and asetN C Bp we define an operator jp mapping Herbrand-
structures to Herbrand structures:

‘Yp{N)  MpN.

It is easy to see that jp is antimonotone. Therefore its twofold application - A
IS monotone ([Tar55]).

Obviously, the stable models of a program P are exactly the fixpoints of - .
This is just a reformulation of Definition 3.16. WFS is related to - as follons

Theorem 3.20 (WFS and 77
A positive atom A is in WFS(P) iff A £ Ifpi'Jp). A default-atom not A is in
WFS(P) iff A”gfpi'yj,):

WFES{P) = ifp(np) u {not A\ A~ gfpirip)]-
Atom or default-atoms that do occur in neither of the two sets are undefined.

3.5 Complexity and Expressibility

In this section we collect some complexity results for the semantics considered
so far. The reason why NMR-semantics are in the general case (free variables
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Complexity
1 ord prog. prop. prog,
(with functions) (no variables)
Mp A S°-compl. . .
(P is Horn) not A:  n°-compl. linear in [P
A arithm.-compl. i _
) - . inear in |P|
(P is stratified) is S°)
COMP nj-compl. over IN  co-NP-compl.
COMPs [lj-compl. over IN  linear in |P|
STABLE nj-compl. over IN  co-NP-compl.
REG-SEM nj;-compl. over IN  co-NP-compl.
WFS nj-compl. over IN  linear in X |P|
WES' nj-compl. over IN  co-NP-compl.
WEFS+ nj-compl. over IN  co-NP-compl.

Table 2 Complexity of Non-Disjunctive Semantics

and function symbols) undecidable is strongly related to loop-checking. Let us
consider the program
P{x) * P(f{x))

or, equivalently, the infinite propositional program
Po t- pi, Pi P2, 1ee pi t- Pi+i,...

Any NMR-semantics should derive “hot P{t)”” (resp. “hot pP) for all terms t,
but a procedure to detect such infinite loops is impossible in general. Our
principles GPPE and Elimination of Tautologies can detect finite loops.

Prom a modeltheoretic point of view it is easy to define a semantics that
derives “not P(t)”: we could just take all minimal Herbrand models as the
intended semantics. Of course, this does not change the general undecidability.

For the exact terminology, definitions and results presented in this section we
refer the interested reader to the folloning interesting overviews [Sch90, Sch92,
CSA3]. Further results are contained in [EGMO3, Sac93, CS90, EGA3].

While Table 2 treats the complexity Table 3 treats the expressibility problem.
Some general explanations are appropriate;

Table 2: We consider the complexity of deciding if a given ground atom
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Expressibility

1 ord. prog,
(no functions)
M
s Ebm) c IND (thus c P)
COMP =co-NP
COMP:  =IND (thus c P)

STABLE =co-NP
REG-SEM =np~

WES =IND (thus c P)
WES' =IND (thus c P)
WEFS+ =IND (thus c P)

Table 3. Expressibility of Non-Disjunctive Semantics

or default-atom is contained in the respective semantics (i.e. if it is true
in all intended models).

For the 1 column, we consider arbitrary first-order programs with func-
tion symbols. We therefore get undecidability results of varying strength.
Since we restrict to Herbrand models, we can assume (by standard re-
cursive encoding techniques, like Godel-numberings) that all models have
universes which are subsets of the natural numbers IN The completeness
results mean that for every set of the respective complexity class there is
a program that defines this set under the respective sceptical semantics.
Unless indicated otherwise, there is no difference between deciding ground
atoms or ground negated atoms.

For the 2 column, we consider propositional programs. Hence we get
decidable problems of various degrees. W\e denote by |P| the total length
of the program and by #At the number of distinct proposition letters
in P. See also [BED92, Sch92, Imi91, MRT92, Wit91b, JdL92] for more
results on the complexity of propositional programs.

Table 3: Here we consider the expressibility (or expressive power) of
first order programs without function symbols. The idea is to distinguish
between EDB-relations (relations that do not appear in the head of a
program) and IDB-relations (which are contained in some heads). For a
given program P we can view any instance Tof the (finite) EDB-relations
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as an input argument and then compute the (finite) IDB-relations (the
output) under the respective sceptical semantics. So we are asking

What are the relations expressible with logic programs under cer-
tain semantics?

Roughly speaking, a relation R over finite EDB’s V (i.e. for every finite
V is associated a relation on V) is expressible if there is a program
P containing an IDB-symbol r s. t. for every relational database V and
tuple t corresponding to r:

r(i) € SEM{P +V) ifand only if i?(i) holds in V.

This is the classical notion of expressibility ([Sch90, EGMO3]).

Wk are in particular interested to express all relations of some complexity
class (note that the complexity is always with respect to the finite rela-
tional database as input, the program is fixed). It is well-known that the
relations inductively definable over V, we denote them by IND(P) (or sim
ply IND to avoid the explicit occurrence of the EDB), is a strict subclass
of the relations that are polynomial over T (see [Bar75, Mos74, GurSS)).

It is worth noting that in the general predicate logic case, all semantics are
highly undecidable. The entries for comp and comps are to be understood as
restricted to Herbrand models.

In the propositional case, WES is of quadratic complexity (a folklore result —
for a proof see [Wit91a]), while STABLE is co-NP-complete. The low complexity
of WES can be traced back to Dowling and Gallier’s result whereby satisfiability
of Horn clauses can be tested in linear time(|[DG84]). In Dowling and Gallier’s
approach it is actually a minimal model of a Horn theory that is computed in
linear time. Since minimal models of Horn theories are equivalent to closures of
rules without negation the result is directly applicable to well-founded semantics
for logic programs with default-atoms.

As far as expressibility is concerned, STABLE is more expressive: all co-NP-
relations can be expressed, while WPS can only describe all inductively definable
relations. As an example, STABLE can express the satisfiability problem. WES
is not able to do this (unless the polynomial hierachy collapses).
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4  Adding Explicit Negation

So far we have considered programs with one special type of negation, namely
default negation. Default negation is particularly useful in domains where com
plete positive information can be obtained. For instance, if one wants to repre-
sent flight connections from Budapest to the US it is very convenient to represent
all existing flights and to let default negation handle the derivation of negative
information. There are domains, however, where the lack of positive informa-
tion cannot be assumed to support (or support with enough strength) that this
information is false. In such domains it becomes important to distinguish be-
tween cases Where a query does not succeed and cases where the negated query
succeeds. The folloming example was used by McCarthy to illustrate the issue.
Assume one wants to represent the rule: cross the railroad tracks if no train
is approaching. The straightforward representation of this rule with default
negation would be
crosstracks t—not train

It seems obvious that in many practical settings the use of such a rule would not
lead to intended behaviour, in fact it might even have disasterous consequences.
What seems to be needed here is the possibility of using a different negation
symbol representing a stronger form of negation. This new negation —we will
call it explicit negation — should be true only if the corresponding negated
literal can actually be derived. We will use the classical negation symbol -i to
represent explicit negation. The track crossing rule will be represented as

crosstracks  istrain

The idea is that this latter rule will only be applicable if -strain has been proved,
contrary to the first rule which is applicable whenever train is not provable.

In the next subsection we will shortly discuss that explicit negation is (or
should not be) classical negation and how it should interfere with default nega-
tion. In the two following subsections we will generalize the semantics STABLE
and WFS, respectively, to programs with explicit negation.

4.1 Explicit vs. Classical and Strong Negation

First we define the language we are using more precisely.

Definition 4.1 (Extended Logic Program)
An extended logic program consists of rules of the form

Ci— ,...,Onnot ¢x...,not bm

where the ai,bj and c are literals, i.e., either propositional atoms or such atoms
preceded by the classical negation sign. The symbol 'hot *” denotes negation by
failure (default negation), denotes explicit negation.
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We have already motivated the need of a second kind of negation “-i” dif-
ferent from “not . What should the semantics of “-i” be? Should it be just
like in classical logic? Note that classical negation satisfies the law of excluded
middle

AW-"A,

The following example taken from [APP96] shows that classical negation is
sometimes inappropriate for KR-tasks.

Example 4.2 (Behaviour of Classical Negation)

Suppose an employer has several candidates that apply for ajob. Some of them
are clearly qualified while others are not. But there may also he some candidates
whose qualifications are not clear and who should therefore be interviewed in
order to find out about their qualifications. If we express the situation by

hire{X) <—qualified{X) and reject{X) iqualified{X)

then, interpreting  ” as classical negation, we are forced to derive that every
candidate must either ke hired or rejected! There is no room for those that
should ke interviewed. Also, applying the law of excluded middle has a highly
non-constructive flavor.

Let us now again consider again the example crosstracks t—strain from
the beginning of this section. Suppose that we replace -strain by freeJrack.
W& obtain

crosstracks t—freeJrack.

From this program, “not crosstracks”will be derivable for any semantics. There-
fore we should make sure that “hot crosstracks’ is coso derivable from crosstracks t—
-strain — after all, the second program is obtained from the first one by a sim-
ple syntactic operation. This means we have to make sure that default negation
“hot ” treats positive and negative atoms symmetrically.

Such a negation, we will call it explicit will be introduced in the next two
subsections. Note that Gelfond/Lifschitz called the negation they introduced in
their stable semantics classical, although it is not classical in the sense that we
just discussed. Sometimes explicit negation is also called strong negation and
denotes still a variant of our explicit negation. In [APP96] the authors introduce
both a strong and explicit negation and discuss their relation with classical and
default negation at length.

4.2 STABLE for Extended Logic Programs

The extension of STABLE to extended logic programs is based on the notion
of answer sets which generalize the original notion of stable models in a rather
straightforward manner. Let us first introduce some useful notation. We say
aruler = c o ai,..., a,, noi bi,....not ém S P is defeated by a literal /
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| —hbi for some i £ ,m}. We say r is defeated by a set of literals
X \i X contains at least one literal that defeats r. Furthermore, we call the
rule obtained by deleting weakly negated preconditions from r the monotonic
counterpart of r and denote it with Mon{r). We also apply Mon to sets of rules
with the obvious meaning.

Definition 4.3 (X-reduct)
Let P be an extended logic program, X a set of literals. The X-reduct of P,
denoted P *, is the program obtained from P by

* deleting each rule defeated by X, and
* replacing each remaining rule r with its monotonic counterpart Mon(r).

Definition 4.4 (Consequences of Rules)
Let R ke a set of rules without negation as failure. Cn{R) denotes the smallest
set of literals that is

1 closed under R, and
2 logically closed, i.e., either consistent or equal to the set of all literals.

Definition 4.5 (yp)
Let P ke a logic program, X aset of literals. Define an operator jp as follows:

ip{X) =Cn{P")
X is an answer set of P iff X =jp{X).

A literal 1 is a consequence of a program P under the new semantics, denoted
| ESTABLE{P), iff I is contained in all answer sets of P.

It is not difficult to see that for programs without explicit negation stable
models and answer sets coincide. Here is an example involving both types of
negation. The example describes the strategy of a certain college for awarding
scholarships to its students. It is taken from [BG]:

Pl : (1) eligiblefx) < highGPA{X)
() eligible{x) E-  minority{x), fairGPA{x)
3 -<eligible{x) -MairGPA{x),"highGPA{x)
@ interview{x) t— not eligible{x),not ~eligible{x)
Assume in addition to the rules above the following facts about Anne are given:
fairGPA(Anne), -<highGPA{Anne)
Wk obtain exactly one answer set, namely

{fairGPA{Anne), ->highGPA{Anne),interview{Anne)}
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Anne will thus be interviewed before a decision about her eligibility is made. If
we use the above rules together with the facts

minority{Mike), fairGPA(Mark)

then the program entails eligible{Mike).
The folloming results are taken from [Lifog];

Lemma 4.6 (Program Types)
Let P ke an extended logic program. P satisfies exactly one of the following
conditions:

e P has no answer sets,
* the only answer set for P is Lit,
* P has an answer set, and all its answer sets are consistent.

A program is consistent if the set of its consequences is consistent, and incon-
sistent otherwise. The former corresponds to the first two cases listed in the
proposition, the latter to the third case. .

We say that a set X of literals is supported by P if, for each literal 1 € X,
there exists a rule | <i,..., a,,, not «i,..., not bmin P such that

1 {ai,...,a,} CX, and
2 {ol,...,smn X =0

Lemma 4.7 (Properties of answer sets)

Let P e an extended logic program. The following properties hold:
 Any consistent answer set for P is supported by P.
o IfX andY are answer sets of P and X CY then X =Y.

» Each element of a consistent answer set of P is a head literai 7" of P.

From the last property it follows immediately that every consequence of P is a
head literal of P whenever P is consistent. \We would finally like to mention the
following theorem:

Theorem 4.8 (Head Consistency)
If the set of head literals of an extended program P is consistent then every
answer set of P is consistent.

head literal of a program P is the head of a rule of P (see also Principle 2.3 and
Definition 6.5).
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Note that a program satisfying the conditions of the last theorem can still be
inconsistent since it may have no answer set at all.

We would finally like to mention that extended logic programs under answer
set semantics can be reduced to general logic programs as follows: for any
predicate p occurring in a program P we introduce a new predicate symbol
p' of the same arity representing the explicit negation of p. V\e then replace
each occurrence of -ip in the program with p', thus obtaining the general logic
program P'. It can be proved that a consistent set of literals S is an answer
set of P iff the set S' is a stable model of P*, where S' is obtained from S by
replacing =pwith p'.

4.3 WEFS for Extended Logic Programs

W& now show how the second major semantics for general logic programs, WFS,
can be extended to logic programs with explicit negation. For our purposes the
characterization of WFS given in Theorem 3.20 will be useful. WFS is based on
a particular three-valued model. To simplify our presentation in this section we
will restrict ourselves to the literals which are true in this three-valued model.
The literals which are false will be left implicit. They can be added in a canonical
way as follows: let T, the set of true literals, be defined as the least fixed point
of a monotone operator composed of two antimonotone operators opiop. . Then
the literals which are false in the three-valued model are exactly those which are
not contained in op. {T). Given this canonical extension to the full three-valued
model we can safely leave the false literals implicit from now on.

We will first present a formulation which can be found in various papers,
e.g. [BG94, Lifog]. We then slightly modify this formulation to obtain stronger
results. We finally discuss a further modification by Pereira and Alferes.

Like answer set semantics well-founded semantics for extended logic pro-
grams can be based on the operator -yp. However, the operator is used in
a totally different way. Since jp is anti-monotone the operator Fp = (jp)*
is monotone. According to the famous Knaster-Tarski theorem [TarS5] every
monotone operator has a least fixpoint. Ve can thus define

Definition 4.9 (WFS for extended programs)
Let P e an extended logic program. The set of well-founded conclusions of P,
denoted WFS{P), is the least fixpoint o/Fp.

The fixpoint can be approached from below by iterating Fp on the empty set.
In case P is finite this iteration is guaranteed to actually reach the fixpoint.

The intuition behind this use of the operator is as follows. whenever jp is
applied to a set of literals X known to be true it produces the set of all literals
that are still potentially derivable. Applying it to such a set of potentially
derivable literals it produces a set of literals known to be true, often larger than
the origined set X. Starting with the empty set and iterating until the fixpoint
is reached thus produces a set of true literals.






4.3 WFS for Extended Logic Programs 43

Wk first want to illustrate this using an example without explicit negation:

P: i« hot a
gg < notbh
©)] -« hotd
&) o note

In the beginning we know nothing about derivable literals, i.e., we start with
empty set X. The X-reduct of the program is

The set of consequences of this program, or in other words, the literals still
considered to be potentially derivable, is thus {b,c,d,e}. If we now reduce the
program with this set we obtain

() b

that is, the first iteration of the two-fold application of 4p tells us that b is
provable.
If we now use X = {s} to continue the iteration we obtain the reduced

program
(1) b

Q e
@ d

that is {b,d,e} is the current set of potential conclusions. Using this set to
reduce the program gives us again

() b

We thus have reached the least fixed point of jp and b is the single literal
provable under WFS. it turns out that no new literal

It can be shown that every well-founded conclusion is a conclusion under
the answer set semantics. Well-founded semantics can thus be viewed as an
approximation of answer set semantics.

Unfortunately it turns out that for many programs the set of well-founded
conclusions is extremely small and provides a very poor approximation of answer
set semantics. Consider the follomng program Pgwhich has also been discussed
by Baral and Gelfond [BG]:

Po (1) b < not<b
2) a I- not—=a
@} “a not a
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The set of well-founded conclusions is empty since jPg (0) equals Lit, the set of
all literals, and the Lii-reduct of Pqcontains no rule at all. This is surprising
since, intuitively, the conflict between (2) and (3) has nothing to do with -it
and h

This problem arises whenever the following conditions hold:

1. a complementary pair of literals is provable from the monotonic counter-
parts of the rules of a program P, and

2. there is at least one proof for each of the complementary literals whose
rules are not defeated by Cn(P'), where P consists of the “strict” rules
in P, i.e., those without negation as failure.

In this case well-founded semantics concludes / iff / G Cn{P"). It should be
obvious that such a situation is not just a rare limiting case. To the contrary, it
can be expected that many commonsense knowledge bases will give rise to such
undesired behaviour. Let us consider again our Example 2.11 from Section 2

fly{x) not >fly{x), bird(x)
% Mlyix)  not fly{x),penguin{x)

Assume further that the knowledge base contains the information that Tweety
is a penguin bird. Now if neither flyiTweety) nor fly {Tweety) follows from
strict rules in the knowedge base we are in the same situation as with Pg; well-
founded semantics does not draw any “defeasible” conclusion, i.e. a conclusion
derived from a rule with default negation in the body, at all.

We want to show that a minor reformulation of the fixpoint operator can
overcome this weakness and leads to better results. Consider the folloming

operator i
1.(X) = C{PY)

where CI{R) denotes the minimal set of literals closed under the (classical) rules
R. CKR) is thus like Cn{R) without the requirement of logical closedness. Now
define

r~ (") = ip{ip{x))
Again we iterate on the empty set to obtain the well-founded conclusions of a
program P which we will denote WFS*{P).

Consider the effects of this modification on our example Pg - pg() =
{a, =6 & Rule (1) is contained in the {a, -, b}-reduct of Pgand thus Tp*(0) =
{3 Since s is also the only literal contained in all answer sets of Pqour ap-
proximation actually coincides with answer set semantics in this case.

In the Tweety example both fly{Tweety) and ->fly{Tweety) are provable
from the O-reduct of the knowledge base. However, this has no influence on
whether a rule not containing the default negation of one of these two literals
in the body is used to produce 7p(0) or not. The effect of the conflicting
information about Tweety’s flying ability is thus kept local ajid does not have
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the disastrous consequences it has in the original formulation of well-founded
semantics.

It is not difficult to see that the new monotone operator is equivalent to the
original one whenever P does not contain negation as failure. In this caae the
X-reduct of P, for arbitrary X, is equivalent to P and for this reason it does
not make any difference whether to use jp or jp as the operator to be applied
first in the definition of Fp. The same is obviously true for programs without
classical negation; for such programs Cn can never produce complementary
pairs of literals and for this reason the logical closedness condition is obsolete.

In the general case the new operator produces more conclusions than the
original one;

Lemma 4.10 Let P be an extended logic program, For an arbitrary set of
literals X we have

Tp{X) C Fi,(X).

It can also be shown that the new operator produces no unwanted results,
i.e., that our new semantics can still be viewed as an approximation of answer
set semantics.

Lemma 4.11 Let P be an extended logic program. WFS* is correct wrt,
STABLE, ie., | € WFS*{P) implies | S STABLE{P).

An alternative, somewhat stronger approach, was developed by Pereira and
Alferes [PA92, AP95, AP96], the semantics WFSX. This semantics implements
the intuition that a literal with default negation should be derivable from the
corresponding explicitly negated literal. The authors call this the coherence
principle. To satisfy the principle they use the seminormal version of a program
P, denoted S{P), which is obtained from P by replacing each rule

c( ,...,ainot bA..., not bj

by the rule
c( ,...,aynot b\...,not bj,not c

where —€ is the complement of ¢, i.e. -icif cis an atom and a if c = > Based
on this notion Pereira and Alferes consider the following monotone operator;

np{x) = FRIrsv)

The use of the seminormal version of the program in the first application of
7 * guarantees that a literal I is not considered a potential conclusion whenever
the complementary literal is already known to be true. In the general case
S{P)" contains fewer rules than P ~. Therefore, fewer literals are considered as
potential conclusions and thus more conclusions are obtained in each iteration
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of the monotone operator. Here is an example [BG4]:

PwFSX : ) @ < noth
@y b - nota
@ - <

The original version of WFS does not conclude b In WFSX the set X = {-a}
is obtained after the first iteration of the monotone operator. Since rule (1) is
not contained in the X-reduct of the seminormal version of the program the
monotonic counterpart of (.) produces b after the second iteration.

Although a number of researchers consider WFSX to be the more adequate
extension of well-founded semantics to extended logic programs the original
formulation is still very often found in the literature. For this reason we will
base our treatment of preferences in the next section on the earlier formulation
based on - * However, we will briefly show how the coherence principle can be
added in a simple way.

For the next section a minor reformulation turns out to be convenient. In-
stead of using the monotonic counterparts of undefeated rules we will work with
the original rules and extend the definitions of the two operators Cn and Cl ac-
cordingly, requiring that default negated preconditions be neglected, i.e., for an
arbitrary set of rules P with default negation we define Cn{P) = Cn{Mon{P))
and CK{P) = CI{Mon{P)). We can now equivalently characterize jp and jp
by the equations

7P(X) - Cn{Px)

7>(X) = CliPX)

where Px denotes the set of rules not defeated by X.
An alternative characterization of Fp will also turn out to be useful in the
next section. It is based on the folloming notion:

Definition 4.12 (X-SAFE)
Let P be a logic program, X a set of literals. A rule r is X-safe wrt. P
(r GSAFEX{P)) ifr is not defeated by p(X) or, equivalently, if r £ Py\"x)-

With this new notion we can obviously characterize Fp as follows:
Fi,(X) = = Cn(P.,.(x)) = Cn{SAFEX{P))

It is this last formulation that we will modify. More precisely, the notion of
X-safeness will be weakened to handle preferences adequately.
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5 Adding Preferences

In this section we describe an extension of well-founded semantics for logic pro-
grams with two types of negation where information about preferences between
rules can be expressed in the logical language. Conflicts among rules are resolved
whenever possible on the basis of derived preference information. As it turns
out the well-founded conclusions of propositional prioritized logic programs can
be computed in polynomial time.

After giving some motivation in Section 5.1 we introduce our dynamic treat-
ment of preferences together with several small motivating examples in Sec-
tion 5.2. We show that our conclusions are, in general, a superset of the well-
founded conclusions. Subsection 5.3 illustrates the expressive power of our ap-
proach using a more realistic example from legal reasoning.

5.1 Motivation

Preferences among defaults play a crucial role in nonmonotonic reasoning. One
source of preferences that has been studied intensively is specificity [Poo85,
Tous s , TTHI1] — we already discussed it in Example 2.11. In case of a con-
flict between defaults we tend to prefer the more specific one since this default
provides more reliable information. E.g., if we know that students are adults,
adults are normally employed, students are normally not employed, we want to
conclude “Peter is not employed” from the information that Peter is a student,
thus preferring the student default over the conflicting adult default.

Specificity is an important source of preferences, but not the only one, and
at least in some applications not necessarily the most important one. In the
legal domain it may, for instance, be the case that a more general rule is pre-
ferred since it represents federal law as opposed to state law [Pra93]. In these
cases preferences may be based on some basic principles regulating how conflicts
among rules are to be resolved.

Also in other application domains, like model based diagnosis or configura-
tion, preferences play a fundamental role. Model based diagnosis uses logical
descriptions of the normal behaviour of components of a device together with
a logical description of the actually observed behaviour. One tries to assume
normal behaviour for as many components as possible. A diagnosis corresponds
to a set of components for which these normalcy assumptions lead to inconsis-
tency. Very often a large number of possible diagnoses is obtained. In real life
some components are less reliable than others. To eliminate less plausible diag-
noses one can give the normalcy assumptions for reliable components of higher
priority.

In configuration tasks it is often impossible to achieve all of the design goals.
Often one can distinguish more important goals from less important ones. To
construct the best possible configurations goals then have to be represented as
defaults with different preferences according to their desirability.
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The relevance of preferences is well-recognized in nonmonotonic reasoning,
and prioritized versions for most of the nonmonotonic logics have been proposed,
e.g., prioritized circumscription [Lif85], hierarchic autoepistemic logic [Kores ],
prioritized default logic [Bre4]. In these approaches preferences are handled in
an “external” manner in the following sense: some ordering among defaults is
used to control the generation of the nonmonotonic conclusions. For instance, in
the case of prioritized default logic this information is used to control the gener-
ation of extensions. However, the preference information itself is not expressed
in the logical language. This means that this kind of information has to be
fully pre-specified, there is no way of reasoning about (as opposed to reasoning
with) preferences. This is in strong contrast to the way people reason and argue
with each other. In legal argumentation, for instance, preferences are context-
dependent, and the assessment of the preferences among involved conflicting
laws is a crucial (if not the most crucial) part of the reasoning. What we would
like to have, therefore, is an approach that allows us to represent preference
information in the language and derive such information dynamically.

5.2 Handling Preferences

In order to handle preferences we need to be able to express preference infor-
mation explicitly. Since we want to do this in the logical language we have to
extend the language. Ve do this in two respects:

1 we use a set of rule names N together with a naming function name to
be able to refer to particular rules,

2. We use a special (inflx) symbol ~ that can take rule names as arguments
to represent preferences among rules.

Intuitively, n\ <ri. where ni and n. are rule names means the rule with name
ni is preferred over the rule with name

Definition 5.1 (Prioritized Program)

A prioritized logic program is a pair (R,name) where R is a set of rules and
name a naming function. To make sure that the symbol < has its intended
meaning, i.e., represents a transitive and anti-symmetric relation, we assume
that R contains all ground instances of the schemata

NI X Ns NI <Ns,Ns <Ns
and
~ANs <Ni) *"Ni-~Ns

where Ni are parameters for names. Note that in our examples we won't mention
these rules explicitly.

that for historical reasons we follow the convention that the minimal rules are the
preferred ones.
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The function name is a partial injective naming function that assigns a name
n € iV to some of the rules in R. Note that not all rules do necessarily have a
name. The reason is that names will only play a role in conflict resolution among
defeasible rules, i.e., rules with weakly negated preconditions. For this reason
names for strict rules, i.e., rules in which the symbol not does not appear, won't
be needed. A technical advantage of leaving some rules unnamed is that the
use of rule schemata with parameters for rule names does not necessarily make
programs infinite. If we would require names for all rules we would have to use
a parameterized name for each schema and thus end up with an infinite set N
of names.

In our examples we assume that N is given implicitly. \We also define the
function name implicitly. e write;

Tj.c”™ a\...,oq,not H\,..., not

to express that name(c U, ..., a,, hot bi,...,not bm) —ni.

For convenience we will simply speak of programs instead of prioritized logic
programs whenever this does not lead to misunderstandings.

Before introducing our new definitions we would like to point out how we
want the new explicit preference information to be used. Our approach follows
two principles:

1 We want to extend well-founded semantics, i.e. we want that every WFS*-
conclusion remains a conclusion in the prioritized approach.

2 We want to use preferences to solve conflicts whenever this is possible
without violating principle 1

Let us first explain what we mean by conflict here. Rules may be conflicting
in several ways. In the simplest case two rules may have complementary literals
in their heads. e call this a type-1 conflict.

Definition 5.2 (Type-1 Conflict)
Letvi andV/ be two rules. We say r\ andr. are type-l conflicting iff the head
of ri is the complement of the head of T 1

Conflicts of this type may render the set of well-founded conclusions inconsistent,
but do not necessarily do so. If, for instance, a precondition of one of the rules
is not derivable or a rule is defeated the conflict is implicitly resolved. In that
case the preference information will simply be neglected. Consider the following
program P\:

ni ;s €not ¢
n. 1~=p” not b
T3:n2 <H






50 5 ADDING PREFERENCES

There is a type-I conflict between ni and n. - Although the explicit preference
information gives precedence to ri. we want to apply ni here to comply with the
first of our two principles. Technically, this means that we can apply a preferred
rule r only if we are sure that r’s application actually leads to a situation where
literals defeating r can no longer be derived.

The folloming two rules exhibit a different type of conflict:

as<ot b
b” not a

The heads of these rules are not complementary. However, the application of
one rule defeats the other and vice versa. We call this a direct type-11 conflict.
Of course, in the general case the defeat of the conflicting rule may be indirect,
1.e. based on the existence of additional rules.

Definition 5.3 (Type-Il Conflict)
Letr\ and Vs be rules, R aset of rules, We say ri and \/ are type-1I conflicting
writ. R iff

1 CKR) neither defeats ri norr-,
2 CI{R-\-ri) defeatsr., and
3 CKR +r.) defeats rl

Here R +r abbreviates iiU{r}. Adirect type-Il conflict is thus a type-11 conflict
wrt. the empty set of rules. The rule sets R that have to be taken into account
in our well-founded semantics based approach are subsets of the rules which are
undefeated by the set of literals known to be true. Note that the two types of
conflict are not disjoint, i.e. two rules may be in conflict of both type-1 and
type-11. Consider the folloming program P:, a slight modification of Pi:

ni :s <ot c notH
n: :-i5k—not b
nz :U2 <ni

Now we have a type-lIl conflict between ni and ri. (more precisely, a direct
type-11 and a type-1 conflict) that is not solvable by the implicit mechanisms of
well-founded semantics alone. It is this kind of conflict that we try to solve by
the explicit preference information. In our example ri. Will be used to derive
<h Note that now the application of U defeats ni and there is no danger that
a literal defeating U might become derivable later. Generally, a type-11 conflict
between ri and . (wrt. some undefeated rules of the program) will be solved
in favour of the preferred rule, say ri, only if applying ri excludes any further
possibility of deriving an ri-defeating literal.

Note that every type-l conflict can be turned into a direct type-11 conflict
by a (non-equivalent!) rerepresentation of the rules: if each conflicting rule r
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is replaced by its seminormal form}* then all conflicts become type-I1 conflicts
and are thus amenable to conflict resolution through preference information.

After this motivating discussion let us present the new definitions. Our
treatment of priorities is based on a weakening of the notion of AT-safeness
(Definition 4.12). In Sect. 2 we considered a rule r as X-safe whenever there
is no proof for a literal defeating r from the monotonic counterparts of X-
undefeated rules. Now in the context of a prioritized logic program we will
consider a rule r as X-safe if there is no such proof from monotonic counterparts
of a certain subset of the X-undefeated rules. The subset to be used depends on
the rule r and consists of those rules that are not “dominated” by r. Intuitively,
r' is dominated by r iff r' is

1. known to be less preferred than r and

». defeated when r is applied together with rules that already have been
established to be X-safe.

() is necessary to make sure that explicit preference information is used the
right way, according to our discussion of Pi.

It is obvious that whenever there is no proof for a defeating literal from all
X-undefeated rules there can be no such 