M. s103/3. Eroñ lorañd máguess mutsli

TCuFteg
$\square$

$$
2
$$

Ms 5103/3.

c. $\sqrt{\text { éme evrocy }}$

Toisip $\left\{\begin{array}{l}l=24^{\circ} \text { is } l^{\prime}=30^{\circ} \\ \varphi=48^{\circ} \text { is } \varphi^{\prime}=51^{\circ}\end{array}\right\}$ hoinh
 lemirt ajowern $\frac{\mu}{h}$ is $\triangle$ ontun leak $2,97 \mathrm{~d}$.

$$
\begin{aligned}
& \lambda=2 g^{0} \quad \varphi=4 g^{0} 30 \text { na. } \quad c=0,000227 \\
& \delta=15^{\circ} 54, \quad h=11902 \\
& \alpha=197^{\circ} \quad \frac{L L}{h}=0,000257 \\
& A=89^{\circ} \quad \Delta=0,000145 \\
& \frac{L l}{h} \operatorname{in}(\alpha-\delta)-\Delta \cos (1-\delta)+c \sin \delta=-0,000004 \\
& -0,000005-0,000061+0,000062 \\
& \begin{aligned}
S= & \frac{L l}{h} \cos (\alpha-\delta)+\Delta \sin (\alpha-\delta)-\cos \delta=-0,000343 \\
& -0,00025 \gamma+0,000132-0,000218
\end{aligned}
\end{aligned}
$$

nyzin.

$$
\begin{aligned}
& i^{i}=66^{\circ} \quad y=0,000145^{\circ} \quad \gamma=18^{\circ} \\
& \begin{aligned}
\frac{1}{h} \frac{\partial^{2} V}{\partial 2 \partial x}= & \frac{\mu}{h} \operatorname{tg} i \cos \alpha+\frac{7}{\cos ^{2} i} \cos \gamma=+282 \\
& +83 y
\end{aligned} \\
& \begin{aligned}
\frac{1}{h} \frac{\partial^{2} V}{\partial 2 \partial y}= & =\frac{L}{h} \operatorname{tg} i \sin \alpha-\frac{7}{\cos ^{2} i} \sin \gamma=-102 \\
& +16 y-271
\end{aligned}
\end{aligned}
$$

$$
1=310
$$





| $\lambda=29^{\circ}$ | ,$y=50^{\circ} 30^{\prime}$ | $50^{\circ}$ | $49^{\circ} 45$ | $49^{0} 30^{\prime}$ | $49^{0} 15^{-1}$ | $40^{\circ}$ | $48^{\circ} 30$ | $48^{\prime}$ | 37030 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\log \frac{H}{h}$ | 2,35218 | 2,42651 | 2,522 リ \% | 2,51720 | 2,11394 | 2,34242 | 2,45332 | 2, 4082 \% | 2,32631 |
| $\log \operatorname{tg} i$ | 0,36170 | 0,35928 | 0,35483 | 0,35074 | 0,34803 | 0,34465 | $0,3372 \theta$ | 0,33001 | 0,32150 |
| $\log \frac{4}{2} \operatorname{tog}$ | 2,71388 | 2,78579 | 2,87727 | 2,86794 | 2,46197 | 2,68707 | 2,79061 | 2,73825 | 2,64784 |
| $\lg \cos \alpha$ | $0,99940-1$ | $0,98872-1$ | $0,98690-1$ | $0.99993-1$ | $0.99335-1$ | 0,98284-1 | 4,98872-1 | C.98284-1 | 2.984gy-1 |
| $\operatorname{lo} \frac{A}{\hbar} \operatorname{tg} i \cos \alpha$ | 2,71328 | 2,77451 | 2,86417 | 2,86787 | 2,45532 | 2,66991 | 2,77933 | 2,72109 | 2,63278 |
| $\text { 偖 } \mathrm{Hgicol}$ | $-517$ | $-595$ | $-731$ | $-738$ | -285 | $-468$ | $-602$ | $-526$ | $-420$ |
| $\log \frac{H}{2} \lg i$ | 2.71388 | 2,78579 | 2,87727 | 2,86794 | 2,46197 | 2,68707 | 2,79061 | 2,73825 | 2.61781 |
| $\rho \sin \alpha-$ | 0,71880-2 | $0,35209-1$ | $0,38368-1$ | 0,24186-2 | 0,23967-1 | $0,44034-1$ | $0,35209 \cdot 1$ | 0,4403y-i | $0,41300-1$ |
| $\lg \frac{H}{\hbar} \operatorname{tg} i \operatorname{Sm} \alpha$ | 1,43268 | 2,13788 | 2,26095 | 1,10980 | 1,70164 | 2,12741 | 2,14270 | 2,17859 | 2,06084 |
| $\frac{\pi}{h} \lg i \sin \alpha$ | $-27$ | $-137$ | $-182$ | - 13 | $-50$ | $-134$ | $-139$ | $-151$ | $-115$ |
| $\log _{2} \sqrt{2}$ | 2,28556 | 2,1846p | 2,20683 | 2,10037 | 2,06446 | 2,12057 | 2,18469 | 2,16/37 | 2,20683 |
| $\frac{g \cos ^{2} t}{y}$ | $0,20840-1$ | 0,20546-i | $0,21292-1$ | $0,21976-1$ | 0,22428-1 | 0,22988-i | 0,24208-1 | 0,25406-1 | 0,26796.1 |
| $\log \frac{7}{\cos ^{2} 6}$ | 3,08416 | 2,97923 | 2,99391 | 2,88061 | 2,84018 | 2,89069 | 2,94261 | 2,90731 | 2,93887 |
| $\log \cos y$ | 0,99040-i | 0,99894-1 | $0,99675.1$ | $0,98494-14$ | $0, g 72 g g-1$ | $0,9976 i-1$ | $0,9849^{1 / 1}$ | $0,9819 \% 1$ | $0,98060-1$ |
| $\frac{\log \frac{1}{\cos ^{2} \cdot \cos y}}{1}$ | 3,07456 | 2,97817 | 2,99066 | 2,86555 | 2,8/3/7 | 2,88830 | 2,92755 | 2,89225 | 2,91947 |
| $\frac{y}{\cos ^{2} i} \cdot \cos y$ | 1187 | $951$ | $978$ | $734$ | 650 | $773$ | $846$ | $780$ | $83 \%$ |
| $\log \frac{\sqrt{2}}{\cos ^{2} i}$ | 3,08416 | 2.97923 | 2,99391 | 2,88061 | 2,84018 | 2,89069 | 2,94261 | 2,90731 | 2,93807 |
| ysin | 0,31788-i | 0,84358-2 | $0,08589-1$ | 0,41300-1 | $0,53405-1$ - | 0,01923-1. | $0,41300-1$ | $0,41300-1$ | $0,46594-i$ |
| $\frac{2 \cos ^{2} c}{M}$ | 2,40204 | 2,82281 | 2,07980 | 2,29361- | $2,37423=$ | 1,90992 | 2,35561 | 2,32031 | 2, 40481 |
| $\frac{\pi}{\cos ^{2} i} \sin x$ | $252$ | $66$ | 120 | $-197$ | $-237$ | $8 i$ | $227$ | 209 | 254 |

$$
\begin{gathered}
d=2 q^{0} \quad \varphi=49^{0} / 5^{-1} \\
c=0,000225
\end{gathered}
$$



$$
\begin{gathered}
h=1,902 \quad \delta=16010 \\
\alpha=190^{\circ} \quad \frac{\mu}{h}=0,000120 \\
h=7,0 \quad \Delta=0,000181 \\
\frac{H l}{h} \sin (\alpha-\delta 1+c \operatorname{con} \delta-\Delta \cos (\beta-\delta)=-0,0000028 \\
0,000014+0,000062-0,000104 \\
S=\frac{L}{h} \cos (\alpha-\delta 1-c \cos \delta+\Delta \sin (k-\delta)=-0,000197 \\
-0,00012 q-0,000216+0,000148
\end{gathered}
$$

$$
\frac{l=2 q^{0} \quad \varphi=4 q^{0}}{c=0,000223}
$$

$\frac{\mu}{h}$ Quarratikens.n 4 Cinecivision viámition.

$$
\begin{array}{ll}
h=1,912 & \delta=16^{\circ} 5^{\prime} \\
\alpha=196^{\circ} & \frac{u}{h}=0,000220 \\
\beta=83^{\circ} & \Delta=0,000161
\end{array}
$$

$$
\begin{aligned}
& \frac{d}{h} \sin (\alpha-\delta)+c \sin \delta-\Delta \cos (h-\delta)=0 \\
& 0+0,000062-0,000062
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\lambda=2 q^{0} \quad \varphi=48^{\circ} 20^{\prime}}{c=0,000219} \\
& h=1,940 \quad \delta=16^{\circ} 4^{\prime}
\end{aligned}
$$

$\Delta$ is $\frac{\mu}{L}$ miv hirsiperliker yomition.

$$
\begin{gathered}
\alpha=19^{3} \quad \frac{L l}{h}=0,000284 \\
h=86^{\circ} \quad \Delta=0,00014 \delta \\
\frac{L}{h} \sin (\alpha-\delta)+\cos \delta-\Delta \cos (h-\delta)=+0,000026 \\
+0,000010+0,000062-0,000044 \\
\frac{L}{h} \cos (\alpha-\delta)-\cos \delta+\Delta \sin (\phi-\delta)=-0,000358 \\
-0,000284-0,000210+0,000126
\end{gathered}
$$

$$
\lambda=2 q^{0} \quad \varphi=48^{\circ} 0^{\prime}
$$

1 iे $\frac{H}{k}$ höripirkimatiol

$$
\begin{array}{ll}
c=0,000215 \\
\delta=16^{\circ} \%^{\prime} & h=1,952 \\
d=196^{\circ} & \frac{L e}{h}=0,000256 \\
h=80^{\circ} & \Delta=0,000138
\end{array}
$$

$$
\begin{aligned}
\frac{L l}{h} \operatorname{ecm}(\alpha-\delta) & +c \sin \delta-\Delta \cos (\beta-\delta)=-0,000001 \\
0 & +0,00005 y-0,000060
\end{aligned}
$$

$$
S=\frac{\alpha l}{h} \cos (\alpha-\delta)-c \cos \delta+4 \sin (h-\delta)=-0,000338
$$

$$
-0,000256-0,000206+0,000124
$$

$$
\begin{aligned}
& \lambda 2 q^{\circ} \quad \varphi=47^{\circ} 90^{\prime} \\
& \Delta \text { is 知h hóvionimerirs } \\
& c=0,000211 \\
& \delta=15^{\circ} 541 \quad c=0,000211 \quad h=1,974 \\
& d=19^{5^{\circ}} \\
& \frac{K}{4}=0,000212 \\
& \Delta=0,000162 \\
& \frac{4}{h} \sin (\alpha-\delta)-\Delta \cos \left(h_{1}-\delta\right)+c \sin 5=-0,000014 \\
& +58 \\
& \int=\frac{\alpha L}{h} \cos (\alpha-\delta)+\Delta \sin (()-\delta)-c \cos \delta=-273
\end{aligned}
$$

Bapararing $\quad 1=29^{\circ} \quad \varphi=49^{\circ} 30$
1 2n.... a Likiginn mstere 1,20 bill aics.

$$
c=\frac{1,2332}{6366} b \varphi=0,00019075 \varphi \quad c_{9,501}=0,000227
$$



| $\varphi$ | $C$ |
| :---: | :---: |
| 480 | 0,000215 |
| 490 | 223 |
| $50^{\circ}$ | 231 |
| 510 | 239 |

$$
c=0,000229
$$

 $\frac{d e}{a}$ mive lisusivis.

$$
\begin{array}{cl}
h=1,882 & \delta=16^{\circ} 20 \\
\alpha=194^{\circ} & \Lambda=0,000054 \\
\beta=70^{\circ} & \frac{\mu}{h}=0,000335 \\
\frac{\mu}{h} \sin (\alpha-\delta)+c \sin \delta-\Delta \cos (h-\delta)= \\
0,000016+0,000060-0,000022=+0,000046 \\
S=\frac{1}{h}\left(\frac{\partial^{\prime} V}{\partial \alpha^{2}}+\frac{\partial^{2} V}{\gamma^{2}}\right)^{\circ}= & \left.\frac{\mu}{h} \cos (\alpha-\delta)-c \cos \delta+\Delta \sin k-\delta\right)=-0,000510 \\
& -0,000000-0,000220+0,000040
\end{array}
$$

$$
\lambda=29^{\circ} \quad \varphi=50^{\circ}
$$

 $\frac{L}{h}$ mus hióciopivas

$$
\begin{aligned}
& h=1,872 \quad \delta=16^{\circ} 20^{\prime} \\
& \alpha=193^{\circ} \\
& \frac{\mu}{h}=0,000267 \\
& r=78^{\circ} \quad \Delta=0,0006 \mathrm{G} \\
& \begin{array}{l}
\frac{L l}{h} \sin \left(\alpha-J_{1}+c \operatorname{cin} \delta-\Delta \cos (k-\delta)=0,000050\right. \\
0,000150,0000640,00029
\end{array} \\
& S=\frac{1}{h}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\left.\sqrt{y^{\prime}}\right)}=\frac{\mu 匕}{h} \cos (\alpha-\sqrt{1}-c \cos \delta+4 \sin x-\sqrt{2})=0,000436\right.
\end{aligned}
$$

$$
d=29^{\circ} \quad \varphi=50^{\circ} 30^{\prime}
$$

$A$ è $\frac{M}{2}$ mir höincillilen rimitun.

$$
\begin{gathered}
h=1,852 \quad \delta=16^{\circ} 20 \\
\alpha=183^{\circ} \quad \frac{\mu}{h}=0,000225 \\
h=80^{\circ} \quad \angle=0,000145 \\
\frac{\mu l}{h} \operatorname{cm}(2-\delta)+c \sin \delta-\Delta \cos (h-\delta)=0,000052 \\
S=\frac{1}{h}\left(\frac{J^{\prime} V}{\partial x^{2}}+\frac{\partial^{2} v}{y^{2}}\right)=\frac{\mu}{h} \cos ((2-\delta 1-\cos \delta+\Delta \sin (4)-\delta)=-0,00034 \% \\
-0,000218-0,00022 y+0,000120
\end{gathered}
$$

$$
\lambda=28^{\circ}
$$




| i | $\gamma$ | 7 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $67^{\circ}$ | $18^{\circ}$ | $\begin{aligned} & 0,000 \\ & 223 \end{aligned}$ | $\begin{array}{r} -532 \\ +1389 \\ +857 \\ \hline \end{array}$ | $\begin{aligned} & +204 \\ & -451 \\ & -247 \\ & \hline-2 \end{aligned}$ |
| $66^{\circ} 29$ | $15^{\circ}$ | 161 | $\begin{array}{r} -468 \\ +977 \\ +509 \\ \hline \end{array}$ | $\begin{aligned} & +152 \\ & -262 \\ & -110 \\ & \hline-1 \end{aligned}$ |
| $66^{\circ} 20$ | $17^{\circ}$ | 138 | $\begin{array}{r} -525 \\ +819 \\ +294 \\ \hline \end{array}$ | $\begin{aligned} & +171 \\ & -250 \\ & -79 \end{aligned}$ |
| $66^{\circ} 9^{\prime}$ | $16^{\circ}$ | 128 | $\begin{aligned} & -646 . \\ & +81 i \\ & +165 \end{aligned}$ | $\begin{aligned} & +222 \\ & -232 \\ & -10 \\ & \hline-1 \end{aligned}$ |
| Gs ${ }^{\circ} \mathrm{s}$ \% | $0^{\circ}$ | 128 | $\begin{aligned} & -416 \\ & +83 i \\ & +415 \\ & \hline \end{aligned}$ | $\begin{aligned} & +22 i \\ & =000 \\ & +221 \end{aligned}$ |
| Gi461 | $20^{0}$ | 161 | $\begin{array}{r} -468 \\ +893 \\ +425 \\ \hline \end{array}$ | $\begin{aligned} & +199 \\ & -343 \\ & -144 \end{aligned}$ |
| Grow | $15^{\circ}$ | 132 | $\begin{array}{r} -620 \\ +737 \\ +117 \end{array}$ | $\begin{aligned} & +109 \\ & =197 \\ & -88 \end{aligned}$ |
| $60^{\circ}{ }^{1}$ | $16^{\circ}$ | 161 | $\begin{aligned} & -427 \\ & +870 \\ & +443 \\ & \hline \end{aligned}$ | $+107$ <br> $-249$ <br> $=142$ |
| $64^{\circ} 49^{\prime}$ | $20^{\circ}$ | 170 | $\begin{array}{r} -524 \\ +883 \\ +359 \\ \hline \end{array}$ | $\begin{aligned} & +131 \\ & -321 \\ & -191 \end{aligned}$ |



$$
\lambda=28^{\circ} 30^{\prime}
$$




| $i$ | $\gamma$ | $\stackrel{\rightharpoonup}{4} 100$ <br> J |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 66^{\circ} 5^{4} \\ & 18 y_{n}, \end{aligned}$ | $+17^{\circ}$ | $\begin{aligned} & 0,000 \\ & 207 \end{aligned}$ | $-564$ <br> $+1286$ <br> $+722$ | $\begin{aligned} & +120 \\ & -393 \\ & \hline-273 \\ & \hline \end{aligned}$ |
| $66^{\circ} 25$ | $+15^{\circ}$ | 127 | $\begin{array}{r} -543 \\ +827 \\ \hline+284 \\ \hline \end{array}$ | $\begin{aligned} & +19 \\ & -221 \\ & -202 \\ & \hline \end{aligned}$ |
| $66 \%$ | +180 | 162 | $\begin{aligned} & -706 \\ & +949 \\ & +243 \end{aligned}$ | $\begin{aligned} & +189 \\ & -308 \\ & -119 \end{aligned}$ |
| $66^{\circ} 2$ | $+38^{\circ}$ | 181 | $\begin{aligned} & -709 \\ & +864 \\ & +155 \end{aligned}$ | $\begin{aligned} & +286 \\ & -675 \\ & -989 \\ & \hline \end{aligned}$ |
| $\cos ^{\circ} 53^{\prime}$ | $+20^{\circ}$ | 153 | $\begin{aligned} & -326 \\ & +793 \\ & +467 \\ & \hline \end{aligned}$ | $\begin{aligned} & +204 \\ & -458 \\ & -254 \\ & \hline \end{aligned}$ |
| $65^{\circ} 40^{\prime}$ | $8^{\circ}$ | 181 | $\begin{aligned} & -355 \\ & +1056 \\ & +701 \\ & \hline+ \end{aligned}$ | $\begin{aligned} & +136 \\ & \frac{-148}{-12} \end{aligned}$ |
| $65^{\circ} 23$ | $14^{\circ}$ | 125 | $\begin{aligned} & -502 \\ & +755 \\ & +259 \end{aligned}$ | $\begin{aligned} & +10 y \\ & \frac{-188}{-71} \end{aligned}$ |
| $65^{\circ} 0$ | +12 | 145 | $\begin{aligned} & -505 \\ & +791 \\ & +286 \\ & \hline \end{aligned}$ | $\begin{aligned} & +175 \\ & \frac{-180}{-48} \end{aligned}$ |
| $64^{\circ} 35$ | +18 | 162 | $\begin{array}{r} -443 \\ +836 \\ +393 \\ \hline \end{array}$ | $\begin{aligned} & +102 \\ & -272 \\ & -170 \end{aligned}$ |


| $S=28^{\circ} 20$ | $50^{\circ}>0$ | soo | $44^{\circ} 45$ | $44^{\circ} 30$ | 4cols | $49^{\circ}$ | $48^{6} 00$ | $48^{\circ}$ | $47^{0} 20$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\ln \frac{16}{4}$ | 2,39094 | 2,37475 | 2,50786 | 2,53148 | 2,23553 | 2,20550 | 2,37107 | 2,38729 | 2,32445 |
| ly tyi | 0,37004 | 0,35997 | 0,35619 | 0,35210 | 0,34904 | 0,34465 | 0,33896 | 0,32133 | 0,32313 |
| $\log \frac{4}{6}$ tyi | 2,76098 | 2,73472 | 2,86405 | 2,88358 | 2,58457 | 2,58018 | 2,71003 | 2,41872 | 2,65758 |
| $\log 2 \cos \alpha-_{4 x+}$ - | $0,99040-1$ | $0,99974-1$ | $0,98494-1$ | $0.96717-1$ | $0.92842-1$ | $0,97015-1$ | $0,99040-1$ | $0,98454-1$ | $0,98872-1$ |
| $\operatorname{ly} \frac{\pi}{2} / y_{i} i \cos \alpha$ | 2,75138 | 2,73446 | 2,84899 | 385075 | 2,51299 | 2,55033 | 2,10043 | 2,90366 | 2,64630 |
|  | $-564,1$ | $-542,6$ | $-706,3$ | $-7092$ | $-325,8$ | -355,1 | $-501,7$ | $\frac{-305,4}{}$ | $-442,9$ |
| lag $\frac{1}{2}$ 需i | 2,76098 | 2,73472 | 2,86405 | 2,88358 | 2,58457 | 2,58018 | 2,71003 | 2.71872 | 2,65758 |
| $\frac{\ln 3 \sin \alpha-}{4}$ | 0,31788-1 | 0,54282-2 | $0,41300-1$ | $0,57258-1$ | $0,72421-1$ | 0,55423-1 | $0,31788-1$ | $0,41300-1$ | $0,35-209-1$ |
| $\frac{\operatorname{ly} \frac{\pi}{4} \operatorname{yin}^{2} \sin \alpha}{4}$ | 2,07886 | 1,27754 | $2,27 \bigcirc 05$ | 2,45716 | 2,30878 | $2,13451$ | $2,02 y 91$ | $2,13172$ | $2,0 \circ 967$ |
| $\frac{1}{2} \operatorname{tgi} \sin \alpha$ | $-119,9$ | $-18,9$. | $-189,3$ | $-286,5$ | $-203,6$ | $-106,3$ | $-106,7$ | $-135,4$ | $\frac{102,3}{-10}$ |
| $\log 7$. | 2,31597 | 2,13672 | 2,20959 | 2,25768 | 2,184 $\mathrm{bg}^{2}$ | 2,25768 | 2,10002 | 2,16107 |  |
| $\log \cos ^{2} 2$ | 0,92740 $0^{4} 7$ | $0,20430-1$ | 0,21064-1 | 0,21y50-1 | $0,22258-1$ | 0,22988-1 | 0,22932-1 | 0,25190-1 | $0,26502-1$ |
| $\ln \frac{3}{\cos ^{2} i}$ | 3,12865 | 2,93242 | $2,99888$. | 3,04018 | 2,96211 | 3,02780 | 2,89101 | 2,90947 | $2,9 \text { y y } 20$ |
| $\frac{\log \cos \gamma}{1}$ | $0,98060-1$ | $0,98494-1$ | 0.97821 | 0,89657 | 0,97753 | 0,99575 | 0,98690 | 0,98872 | $0,97821$ |
| $\frac{\log \frac{\partial}{\cos ^{2} i} \cos \gamma}{7}$ | 3,90925 | 2,91736 | 2,97709 | 2,93671 | 2,89964 | 3,02355 | $2,87791$ | 2,89819 | $2,92241$ |
| $\frac{7}{\cos ^{i} i} \cos \gamma$ | 12860 | 826,7 | 948,6 | 864,4 | 790,7 | $105,6,0$ | 7550 | $\frac{789810}{7010}$ | 21924 |
| $\ln \frac{7}{\cos ^{2} i}$ | 3,12865 | 2192242 |  | 3,04018 | 2,96211 |  | 10 | 7910 |  |
| $\ln \sin \gamma$ | $0,46594-1$ | 0.41300 | $0,48998$ | $0,78934$ | $0,6 \operatorname{gs} 87$ | 3,02780 0,14256 |  | 2,90947 | 2,94420 |
| $\ln \frac{7}{4 n^{\prime}} \cdot \operatorname{in} \gamma$ | 2,59459 | 2,34542 | 2,48886 | 2,82952 |  |  | $0,28>68$ | 0,25209 | 0,48998 |
| $=\frac{7}{\sin +i} \sin y .$ | 393,2 | 221,5 | 1, 8886 | 2,82 gS2 | $\frac{2,66108}{45812}$ | 2,17136 | $2,2746 \mathrm{~g}$ | 2,26156 | 2,43418 |
|  | 30, |  |  | 0)313 | 458,2 | 148,4 | 188,2 | 182,6 | 271,8 |

$$
1=2 q^{\circ} 20^{\prime}
$$

| $\lambda=29^{\circ} 30^{\prime}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |





$$
1=29^{\circ}
$$

MAGYAR
IUDOMANYOS AKADEIGA kONYVIARA



fromesia te: hepore


$$
\beta=-550 \quad \int=15^{\circ} 45^{1} \quad \angle 1=\frac{10}{1,5}=6,060,00021
$$

$$
\alpha=170^{\circ} \quad h=0,196 \quad \quad L=\frac{0,000}{3,6}=0,0002720
$$

$$
\begin{aligned}
\frac{\alpha}{h} \sin (d-\sqrt{ }) & -11 \cos (p-d) \\
0,0,00614 & -0,0,00640 \\
0,000 & +0,00014=-0,000114
\end{aligned}
$$

2) hay sueceniy $49^{\prime} 4^{\prime}$ Larmyyy 0 .

$$
\begin{array}{lll}
\beta=90^{\circ} & \delta=15^{00} 40 & \Delta=\frac{0,00291}{9,8}=0,00077 \\
\alpha=182^{\circ} & h=0,195 & \\
0,00026=\frac{0,007}{4,5}=0,000222 \\
0,0,000208+0,000143=0,000204
\end{array}
$$

Siabuyp Prawisian ming m Pani

$$
\begin{aligned}
& c_{y \phi}=0,00185 \\
& \beta=75^{\circ} \quad \delta=16^{\circ} \quad \Delta=\frac{6,0,00291}{14,5}=0,00120 \\
& \alpha=19^{6} \frac{10}{2} \quad h=0,191 \quad H=\frac{0,005}{11,5}=0,00044 . \\
& 0-0,000678+0,0020405= \\
& +0,000510
\end{aligned}
$$

$$
\begin{aligned}
& C_{y y}=0,000170 \quad C_{48}=0,000515 \quad C_{y y}=0,000532 \quad C_{50}=0,000583 . \\
& \frac{L l}{h} \sin (\alpha-\sqrt{2}-A \cos (h-\delta)+c \sin \delta
\end{aligned}
$$

(b)

## 





> Densrese
> $6^{\circ} 53^{\prime}+23^{\prime}=7^{\circ} 19^{\prime}$
$\delta=7^{\circ}$
$\frac{A}{h} \sin (\alpha-\delta)=\Delta \cos (\beta-\delta)$

- opraditur -
$-0,0000414 \%-0,00017 \%$
$S=\frac{4}{2} \cos (\alpha-\delta)+\Delta \sin (\beta-\delta)=+0,000060$

$$
0,000124,0,96-0,0210186 \cdot 317
$$

$\int_{2}=-0,000270$
$S^{\prime}=\int-\int_{4}=+$ aro 330


hyppenes mires

$\frac{d}{h} \sin (\alpha-\delta)=A \operatorname{ars}(h-\delta)$
$-0,000059-0,0000$ 39.

MAEYAR
TUDOMANYOS AKABTISEA
kONYETARA
$\Delta \frac{\alpha}{h}=0, \operatorname{arot} 20 \quad \alpha=216$
$-0,13$
$S=L \sin (p-\delta)+\frac{\alpha}{h} \cos (\alpha-\delta)=-0,000160$
$\Omega^{\prime}=S-S_{n}=-0,000166+0,000272=+0,000176$

$\theta^{2}=-25^{20} 50^{\prime} \partial=\frac{d}{h} \cos (2 \lambda-\alpha-\sqrt{2})+\Delta \min (2 \delta / 2-\delta)=0,0000 \frac{70}{10}$

$S^{\prime}=\rho^{0} 50^{\prime}$

$$
D^{\prime}=0, \operatorname{arc} 2, B \div 0, \operatorname{arc} 2,3
$$

$$
\frac{1}{h}\left(\frac{\partial^{2} V}{\partial x^{2}}\right)^{\prime}=0,000 \operatorname{lat}
$$

$$
\frac{1}{h}\left(\frac{\partial^{2} V}{\partial y^{2}}\right)^{\prime}=+0,00001 g
$$



Pamonuture valele saneghes.
Commonhalma

$$
\begin{aligned}
& + \text { Pammonhatinn } \\
& 9^{0} 53+2 \\
& \frac{9^{0} 55^{\prime}}{2,110}
\end{aligned}
$$



Kèperes mered $\quad 36^{\circ} \quad 0^{\circ}$-gyarlas-Entergour. Örytayos

$$
\frac{A}{2} \operatorname{sm}(\alpha-\delta)=\Delta \cos (\beta-\delta)
$$

$-0,00002 g 4=-0,0000280$
$S=\Delta \sin (\beta-\delta)+\frac{4}{2} \cos (\alpha-\delta)$
$S=-0,0000506-0,000279=-0,000330$
$S^{\prime}=S-S_{n}=-0,000220+0,000242=+0,000012$

$$
\operatorname{tg} 2 \theta=\frac{\left(\frac{\Delta}{\hbar}\right)^{2} \sin ^{2} 2 \alpha+\Delta^{2} \sin 2 \beta}{\left(\frac{\Delta t}{h}\right)^{2} \cos ^{2} \alpha+\Delta^{2} \cos ^{2} \beta}=
$$

heipreres rives
Bulapust Ván Jours
hillman höup
$48^{\circ}$


$$
\begin{aligned}
\frac{u_{2}}{i} \sin (\alpha-\delta)= & \Delta \cos (p-\delta) \\
0,00012 y & -0,001010
\end{aligned}
$$

$$
S=\Delta \sin \left(h-\delta 1+\frac{L}{2} \cos (\alpha-\delta)=-0,000241\right.
$$

$$
\begin{aligned}
& \Delta=1.50^{\prime} \\
& D=\frac{\mu}{h} \sin (28-\alpha-\delta)+\Delta \sin (2 \delta-\beta-5)=0,000068
\end{aligned}
$$

$$
\begin{aligned}
& \partial^{\prime}=12^{\circ} 40^{\prime} \quad D^{\prime}=0,000256 \\
& \frac{1}{\hbar}\left(\frac{\partial^{\prime} V}{\partial x^{2}}\right)^{\prime}=+0,000178 \quad \frac{1}{h}\left(\frac{\partial^{\prime} V}{\partial \eta^{2}}\right)^{\prime}=-0,0000078 \text {. }
\end{aligned}
$$

Kivé


$$
h=-90 \quad \Delta_{\text {cminin }}=0,00007 \% .
$$



$\frac{\mu l}{h}$ 2,08 is 2,16 as isonly nometoíl

$$
\frac{\mu l}{h}=0,0000^{2 G_{8}} \quad \alpha=195^{\circ}
$$

$\delta=q^{0}$

$$
\frac{\alpha l}{h} \sin (\alpha-\delta)=\Delta \cos (\beta-\delta)
$$

$$
-0,000028 \quad-0,000012
$$

$$
S_{h}=A \operatorname{men}(\beta-\delta)+\frac{2 x}{\hbar} \cos (\gamma-\delta)=-0,000342
$$

$$
\left.y 2 d=\frac{\left(\frac{H}{\pi}\right)^{2} \sin 2 \alpha+\Delta^{2} \sin 2 h}{\left(\frac{H}{A}\right)^{2} \cos 2 \alpha+A^{2} \cos 1 / \beta}=0,6\right) 9
$$

$$
w_{i}\left\{\begin{array}{l}
32^{\circ} 30^{\prime} \\
212^{\circ} 30^{\prime}
\end{array}\right.
$$

$$
\begin{gathered}
\underline{D_{h}=106^{\circ} 15^{\prime}} D_{h}=\frac{\mu}{h} \cos (2 \delta-\alpha-\delta)+\Delta \sin (2 \delta-h-\delta)=0,000194 \\
\left.\frac{1}{h} \frac{\partial^{2} V}{\partial \partial^{2} / n}\right)=-0,00007^{4} \quad \frac{1}{h}\left(\frac{\partial^{2} V}{\partial y^{2} / h}=-0,000268\right.
\end{gathered}
$$

Antic muntring norey


Dn mily chr


$$
\frac{d}{h}=0,000392 .
$$

$$
\alpha=194^{\circ} \quad \delta=7^{\circ}
$$

$$
\Lambda=0 .
$$

$$
\frac{\mu_{2}}{n} \sin (\alpha-\delta)=1 \cos \beta_{0}-\left.\delta_{1}\right|_{0}
$$

$$
-0,000047 \text {. }
$$

$$
\begin{aligned}
& 0,000047 . \\
& S=-0,000380=\frac{\mu}{h} \cos (2-S) \\
& S^{\prime}=S-S_{4}=-0,00028 y+0,0
\end{aligned}
$$

$$
\begin{aligned}
& S=-0,000380=\frac{\mu}{2} \cos (2-\delta) \\
& S^{\prime}=S_{L}-S_{n}=-0,00028 y+0,000201=-0,000188
\end{aligned}
$$

$\theta=104^{\circ} \mathrm{ra} \quad \gamma=\frac{\mu}{\hbar} m(2 \alpha-\alpha-\delta)=0,000289$
$r^{\prime}=105^{\circ} / 10^{\prime}$

$$
\gamma^{\prime}=\frac{\gamma_{2 m 2} d+0,000718}{2 m 2}=0,000112
$$

$$
\frac{1}{\hbar}\left(\frac{\partial^{2} V}{\partial x^{2}}\right)^{\prime}=-0,000008 \quad \frac{1}{h}\left(\frac{\partial^{2} V}{\partial y^{2}}\right)^{\prime}=-0,000150
$$

thulys Syenvir Tharnviaitl?

$$
\frac{L e}{h} \sin (\alpha-\delta)=\Delta \cos (\alpha-\delta)
$$

$$
-0,000015 \quad-0,000198
$$

$=128^{\circ}$.
$\gamma^{\prime}=-3,020^{\prime} \quad \gamma^{\prime}=0,000295^{\circ}$

$$
\begin{aligned}
& S=A \sin (1 \cdot \sqrt{ })+\frac{d L}{h} \cos (\alpha-d)=-0,000722 . \\
& \left.S-S^{\prime}=-0,000\right\rangle 22+0,000200=-0,000521 \\
& \left(\frac{1}{h} \frac{\partial^{2} V}{\partial x^{2}}\right)_{v}^{\prime}=-0,000113 \quad \frac{1}{h}\left(\frac{\partial^{2} V}{\partial y^{2}}\right)=-0,000208
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=\frac{u}{\hbar} \operatorname{ars}(28-\alpha-\delta)+\Delta \sin (28-h-\lambda)=0,000176
\end{aligned}
$$

Lamont noy nemalonijit birkejo.
Sithingen
$\frac{\text { Ongreniaf is eqien }}{\frac{1}{2} \text { minimer }=0,600 \text { hisme ior }}$

$$
c=\frac{0,608}{6070 . \operatorname{ing} \varphi} \quad c_{8,}=0,000105
$$

Parmstart, $h=$

$$
c=0,000 \pi / 3
$$

$$
V=-7^{\circ} 00 \mathrm{Nl}
$$

$$
\frac{1}{2}\left(\frac{\partial^{2} V}{\partial x^{2}}\right)_{0}=-0,0000615 \quad \frac{1}{4}\left(\frac{\partial^{2} V}{\partial y^{Y}}\right)_{0}=-0,0000118
$$

$$
\text { Lemhaz } \quad \delta=18^{\circ} \quad \Delta=0,000064 \quad \beta=90^{\circ} \quad c=0,00011
$$

$$
\frac{d}{h}=0,000535 \quad \alpha=201^{\circ}
$$

$$
\frac{H}{h} \sin (\alpha-\delta)+a \sin \delta=\Delta \operatorname{ar}(\beta-\delta)
$$


$-0,0000281+0,0000341 \quad 0,000019^{2}$

$$
\begin{aligned}
& h=19^{\circ} 50^{\prime} d \\
& \frac{1}{h}\left(\frac{\partial^{2} V}{\partial x^{2}}\right)=0,00054 \\
& \frac{1}{4}\left(\frac{\partial^{2} V}{\partial y^{2}}\right)_{0}=-0,0000 \mathrm{H} 2
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\delta=17^{\circ} 30^{\prime}} \quad \Delta=0,0000350
\end{aligned}
$$

$$
\begin{aligned}
& \delta=17^{\circ} 6^{\prime} \quad \quad \quad=0,00024 \\
& \beta=82^{\circ} 30^{\prime} \\
& c=0,000384 \\
& \frac{\mathscr{L}}{h}=0,00037 \\
& \alpha=200^{\circ} \\
& \frac{l l}{h} \sin (\alpha-\delta)+\sin \delta=4 \cos (h-\delta) \\
& -0,0000186 y \\
& \begin{array}{l}
0,0,00112 \mathrm{~g}
\end{array} \\
& 9,0000498 \\
& \Delta t, 0=0,0602 \quad \begin{array}{ll}
\text { y } 20 & 0,0,7264 \\
\text { in }
\end{array} \\
& \theta=18^{\circ}
\end{aligned}
$$

Rajina minhtide Carlsmbe mele ho.

$$
\begin{aligned}
& \delta=17^{\circ} 80^{\prime} \quad \Delta=0,00029 \quad \beta=\frac{830}{\circ} \quad c=0,00011 \\
& \frac{L l}{h}=0,000106 \quad \alpha=130^{\circ} \\
& \frac{d e}{h} \sin (\alpha-\delta)+c \sin 5=\Delta \cos (\beta-\delta) \\
& 0,0000334=0,0001188 \\
& \operatorname{tg} 2 \theta=+0,0688 \quad \quad \partial \theta=\frac{4^{\circ}}{184^{\circ}} \quad \lambda=\frac{2^{\circ}}{92^{\circ}} \\
& \gamma=2^{\circ} \text { al Jeminitim } \\
& \frac{1}{h}\left(\frac{D^{2} V}{\partial x^{2}}\right)=-0,0000803 \quad \frac{1}{h} \frac{D^{2} V}{\partial y^{2}}=0,0001530
\end{aligned}
$$

Leifelbery.

Ployer

$$
\begin{aligned}
& h=21^{\circ} x a \\
& \frac{1}{h}\left(\frac{\partial^{2} V}{\partial x^{2}}\right)_{0}=-0,000724 \quad \frac{1}{h}\left(\frac{\partial^{2} V}{\partial y^{2}}\right)_{0}=-0,000046
\end{aligned}
$$

Suld

$$
\begin{aligned}
& \delta=17^{\circ} 50^{\prime} \quad A=0,000072 \quad \beta=85^{\circ} \quad c=0,00011 . \\
& \frac{\mu}{2}=0,000057 \quad \alpha=198^{\circ} 30^{\prime} \\
& \left.\frac{\mu}{h} \sin (\alpha-\delta)+c \sin J=4 \text { cosp }-j\right) \\
& -0,000001 \underbrace{0,0000324}_{0,0000224}=0,0000279 \\
& \operatorname{tg} 2 \theta=1,714 \quad 2 \theta=-60^{\circ} \quad \quad \quad \quad=-20^{\circ} \\
& l=30^{\circ} \mathrm{ma} \text {. } \\
& \frac{1}{h}\left(\frac{\partial^{2} V}{\partial x^{2}}\right)_{0}=0,000057 \quad \frac{1}{h}\left(\frac{\partial^{2} V}{0 y^{2}}\right)_{0}=-0,0000385
\end{aligned}
$$

Angwhert of eisceizerets onimitur．

$$
\begin{aligned}
& \delta=7^{\circ} \quad \beta=41090^{\prime} 2 \text { 韦 }^{\prime} \quad \Delta=0,0002445 \\
& \alpha=156^{\circ} \quad \frac{\alpha}{\hbar}=0,000247 . \\
& c=0,00021 \text {. } \\
& \frac{L l}{h} \sin (\alpha-\delta)+c \sin \delta=\Delta \cos (h-\delta) \\
& 0,00 \underbrace{0,00127^{2}+0,000256}_{0,000152}=0,0001381 \\
& \text { Y, } 2=-1,472 \quad \text { 时 }=\begin{array}{l}
-54^{\circ} 50^{\prime}, \\
+124^{\circ} 10^{\prime}
\end{array} \quad \lambda=\begin{array}{l}
-28^{\circ} \\
+62^{\circ}
\end{array} \\
& \left(\frac{1}{h}\left(\frac{\partial^{2} V}{\partial x^{2}}\right)_{0}=+0,000048 \quad \frac{1}{h}\left(\frac{\partial^{2} V}{\partial y^{2}}\right)_{0}=-0,000105\right. \\
& r=+62^{\circ} \mathrm{m}
\end{aligned}
$$




$$
\begin{aligned}
& \frac{L l}{h} \operatorname{sen}(\alpha-\delta)+c \sin \delta=4 \mathrm{con}(4-\delta) \\
& -0,00000 y+0,000026=0,000015 \\
& Q=t, 0.00^{\prime} \mathrm{m} \text { ty } 2=0,504 \quad 2 \theta=\left\{\begin{array}{l}
27^{\circ} \\
207^{\circ}
\end{array} \quad \delta=\left\{\begin{array}{l}
10^{\circ} 30^{\prime}, \\
100^{\circ} 20^{\prime}
\end{array}\right.\right. \\
& \frac{t}{k}\left(\frac{\partial^{2} V}{\partial x^{2}}\right)_{0}=-0,000200 \quad \frac{1}{k}\left(\frac{\partial^{2} V}{\partial y^{2}}\right)_{0}=+0,00002 \mathrm{~g} \\
& D_{n}=\left(\frac{\partial^{2} V}{\partial x^{2}}-\frac{\partial^{2} V}{\operatorname{rov}^{2} y^{2} x^{2}}\right)=-0,00025 y h \quad V_{n}=12^{\circ 2} 0 \\
& \text { Fupresra } \quad \nabla=+0,00015^{3} \quad h=62^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \delta^{\prime}=\left\{\begin{array}{l}
29^{\circ} 49^{\circ} 40
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { homit } D^{\prime} \text { mimiv, a } S^{\prime}=29^{\circ} 401 \\
& \text { Meisigare } \quad b=+0,000099 \quad \theta=80^{\circ} 40^{\prime} \\
& 2 h^{\prime}=\left\{\begin{array}{l}
47^{0} 40 \\
227^{\circ} 90
\end{array} \quad H_{2} h^{\prime}=\frac{+0,000022+0,000118}{-0,000094+0,000231}=\frac{+0,000150}{+0,000107}\right. \\
& 1 / 3^{\circ} 50^{\prime} \\
& \theta^{\prime}=\frac{+0,000150}{0,74}=+0,000203
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ny Kilmer Mumbin Kii Jivanà hey }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\frac{\mu}{5} \sin r-\delta & =4 \text { ant } h-\delta \\
-0,000040 & =-0,10000 \mathrm{~g} \text { g }
\end{aligned} \\
& \text { G} 2 \alpha=\frac{\left(\frac{4}{k}\right)^{2} \sin 2 \alpha+\Delta^{2} \sin 2 \beta}{\left(\frac{\alpha}{n}\right)^{2} \cos 2 \alpha+\Delta^{2} \cos ^{2} \beta}=0,6 y 4 \quad \operatorname{ly} 2 \delta=\left\{\begin{array}{l}
34^{\circ} \\
214^{\circ}
\end{array}\right. \\
& D_{1}=107^{\circ} \quad D_{h}=\frac{\mu}{h} \cos \left(2 \theta^{2}-\alpha-\delta\right)+\Delta \sin (2 \delta-h-\delta)=0,00025 \operatorname{g} \\
& S_{n}=\Delta \operatorname{sen}(\beta-\delta)+\frac{H}{h} \cos (\alpha-\delta)=-0,000270 \\
& \frac{1}{h}\left(\frac{\partial^{2} V}{\partial x^{2}}\right)_{h}=-0,000006 \quad \frac{1}{h}\left(\frac{\partial^{2} V}{\partial y^{2}}\right)_{n}=-0,000264
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fitring Malys Esploddision } \\
& \text { Onmin }
\end{aligned}
$$

$$
\begin{aligned}
& S=1 \sin (\beta-\delta)+\frac{M}{\hbar} \cos (\alpha-\delta)=-0,000990 \\
& S_{1}=-0,000200 \quad S^{\prime}=-0,000700 \\
& D=96 \sin ^{\prime}-D=\frac{\mu}{h} \cos (2 \delta-\alpha-\delta)+\Delta \sin (2 d-h-\delta)=+0,000056
\end{aligned}
$$

$$
\begin{aligned}
& 28^{\prime}=\left\{\begin{array}{c}
-1,60^{\circ} 0
\end{array} \quad \theta^{\prime}=-8^{8^{\circ}}+\right. \\
& \gamma^{\prime}=+82^{\circ} \mathrm{ma} \gamma^{\prime}=+0,000120 \\
& \left.\frac{1}{2} \frac{\partial^{2} V}{\partial x^{2}}\right)^{\prime}=-0,000290 \quad\left(\frac{1}{h} \frac{\partial^{2} V}{\partial y^{2}}\right)^{\prime}=-0,000410
\end{aligned}
$$




$$
\begin{aligned}
& \delta=6^{0} 51 \\
& \mathcal{L}=2,1844
\end{aligned}
$$

$J=605, \quad \Delta=0$
$\frac{H}{h}=0,000307 \quad A=219^{\circ} 40$

$$
\frac{\mu}{h} \sin (\alpha-\delta+c \sin \delta=\Delta \cos (\beta-\delta)
$$

$$
=0,00000940+0,0000252=
$$



$$
\begin{aligned}
& \beta=49^{\circ} \quad \gamma_{z}=0, \operatorname{aros} 48 \\
& S_{1}=100^{\circ} 20 \quad D_{n}=0, \operatorname{vor} 21^{\circ} q \\
& V^{\prime}=24^{\circ} 10^{\prime} \quad D^{\prime}=\frac{D_{2} \operatorname{mos}-D_{2} \sin 2 D_{n}}{\sin 2 D_{1}^{\prime}}=0,0 \pi 0452 . \\
& \rho^{\prime}=-0,000581 \\
& \left(\frac{1}{h} \frac{\partial^{2} V}{\partial y^{2}}\right)^{\prime}=-0,000044 \quad\left(\frac{1}{h} \frac{\partial^{2} V}{\partial y^{2}}\right)^{\prime}=-0,000837 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Valovivá Fewina Maninasily } \\
& \text { ィmine Cor } \\
& \Delta=0,000336 \\
& \beta=-56^{\circ} 40^{\prime} \\
& \begin{array}{l}
x \text { huarmivan ax } \\
7^{\circ} 7^{\prime}+2 y^{\prime} \\
7^{\circ} 41^{\prime}
\end{array} \\
& 3185 \\
& \frac{\partial}{h}=0,000143 \\
& \alpha=196^{\circ} \\
& \sqrt{ }=7^{\circ} \\
& \operatorname{ty} 2 \theta=\frac{\left(\frac{\mu L}{h}\right)^{2} \sin 2 \alpha+A^{2} \sin 2 \beta}{\left(\frac{\mu L}{h}\right)^{2} \cos 2 \alpha+\Delta^{2} \cos 2 \beta}=+2,297 \quad \text { 次 }=\left\{\begin{array}{l}
67^{\circ} 20^{\prime} \quad \\
247^{\circ} 20^{\prime}
\end{array} \quad \lambda=30^{\circ} 40^{\prime}\right. \\
& \delta=30^{\circ} 40^{\prime} \quad D=\frac{\mu}{2} \cos (2 \delta-\alpha-\delta)+\Delta \sin (2 \delta-\beta, \delta)=0,0001005
\end{aligned}
$$

$$
\begin{aligned}
& \partial^{\prime}=19^{\circ} 10^{\prime} \quad D^{\prime}=\frac{\partial_{\operatorname{in} 2} \lambda^{\prime}-\partial_{n} \sin 2 \delta_{n}}{\sin 2 \phi^{\prime}}=0,000247 \text {. } \\
& \left.S=\Delta \sin (p-\delta)+\frac{\mu}{h} \cos (\alpha-\delta)=-0,00044\right) \\
& S^{\prime}=S-S_{h}=-0,000200=-0,000242 \\
& \left\{\theta_{1}=\left\{\begin{array}{cc}
+67^{\circ} & 30 \\
249^{\circ} & 30
\end{array}\right\} D_{i}=\begin{array}{c}
38^{\circ} 40^{\prime} \\
124 \\
40^{\prime}
\end{array}\right. \\
& 2 V_{2}=\left\{\begin{array}{l}
18 y^{\circ} 40^{\prime} \\
4^{\circ} 40^{\prime}
\end{array}\right\} \quad \lambda_{2}=2^{\circ} 22^{\circ} 20^{\prime}
\end{aligned}
$$



Sideen Fures

$$
y
$$

$$
C=0,00022
$$

$$
c=0,76^{\prime}
$$

$$
\begin{aligned}
& y_{3}-y_{2}=-35,5 \\
& x_{3}-x_{2}=-27
\end{aligned}
$$

$$
y_{2}-y_{1}=-11,5
$$

$$
x_{2}-x_{1}=+29
$$

$$
\begin{aligned}
& \delta_{3}-\delta_{2}=-2 \\
& \delta_{2}-\delta_{1}=+42
\end{aligned}
$$

$$
A=c \cos \theta=1,116
$$

$$
\phi=c \sin \beta=-\frac{-0,839}{\sqrt{\pi^{2}+0^{2}}}=
$$

$$
\operatorname{tg} \beta=\frac{b}{A}=-0,752 \quad \sqrt{A^{2}+b^{2}}=1,26
$$

$$
-0,000892
$$



$$
\begin{aligned}
& h_{2}-h_{1}=0,012 \\
& h_{2}-h_{1}=-0,030+0,000360 \\
& 01=0,000404 .
\end{aligned}
$$



$$
\operatorname{ly} 2 \rho=\frac{\left(\frac{\pi}{1}\right)^{2} \sin 2 \alpha+A^{2} \sin 2 / 3}{\left(\frac{A}{h}\right)^{2} \cos 2 \alpha+A^{2} \cos 2 / s}=1,57
$$

$$
\frac{1 \partial^{2} V}{4 \partial x^{2}}=-0,000191
$$

$$
\frac{1}{h} \frac{\partial^{2} v}{\partial y^{2}}=-0,000436
$$

$$
D=\frac{\partial 1}{h}\left(\frac{\partial^{2} V}{\partial x^{2}}-\frac{\partial^{2} V}{\partial y^{2}}\right)=0,000245 \quad R=29^{\circ} \quad D_{3}=0,02025 ; \quad \delta_{2}=103^{\circ} 30
$$

$$
S^{\prime}=21^{\circ} \quad D^{\prime}=0,00048 \mathrm{Z} \quad S=4 \sin (2-5)+\frac{d e}{2} \cos (\alpha-\delta)=0,000649 \quad S^{\prime}=0,000448
$$

$$
\begin{aligned}
& \left(\frac{1}{n} \frac{\partial^{2} V}{\partial x^{2}}\right)^{\prime}=+0, \operatorname{arov} 20 \\
& \left(\frac{1}{h} \frac{\partial^{2}}{\partial y^{2}}\right)^{\prime}=-0, \operatorname{arot} 467
\end{aligned}
$$



## IS puncm Foys

1 Aguanis $x_{1}=+21 y_{1}=+8 \quad-0,0715^{-}$J
2 Juchen $x_{2}=-3 \quad n_{2}=+44 \quad+0,079 \quad a_{2}-a_{1}=-44$
2 hano $x_{2}=-15 \quad y_{0}=-40$
$+0,0070$
$a_{0}-a_{2}=-1$

$$
\begin{array}{ll}
x_{2}-x_{1}=-34 & y_{2}-y_{1}=+36 \\
x_{3}-x_{2}=-12 & y_{2}-y_{2}=-84
\end{array}
$$

$$
A=\frac{44.84+36}{34.84+12.36} \quad A=-\frac{12.44-34}{34.84+12.26} .
$$

$$
\frac{844}{326} \quad A=\frac{3696+36}{3288}=\quad \Rightarrow=-\frac{528-34}{2288}=
$$

$\frac{3,66}{269}$
$\frac{12}{88}$
$\frac{44}{528}$
$A=1,135 \quad h=-0,1502$.

$\angle=\underline{A=0,00234>8=-2^{0} 30^{\prime}}$
0, $840976 \frac{2087}{31899}$
 $a_{2}-a_{1} \quad 0,000 \overline{1,135}$
$a_{2}-a_{1}=0,006$ 皆 $\quad a_{2}-a_{2}=-0,01$ 笭

$$
A=-0,0324 .
$$

$$
A=+0,105,7\}
$$

$$
\cos g \phi=-9,24 b s=-13^{\circ} 50
$$

$$
\alpha=103^{\circ} 50^{\prime} \quad \frac{\alpha e^{6}}{h}=
$$



Sicherg ujoatiog

$$
\begin{aligned}
& { }_{\frac{\mu}{\hbar}} \sin (\alpha-\delta)+\cos \delta=\Delta \cos (\beta-\delta) \\
& -\operatorname{mosenan} 3,0+0,000024=0,00001 \% \\
& -0,000 / 13 \\
& \xi 2 h=0,6>6 \quad \quad 2 h=\begin{array}{l}
32^{\circ} 50^{\prime} \quad \\
212 \circ 00^{\prime}
\end{array} \quad h=16^{\circ}, 5^{\prime} \\
& \begin{array}{l}
\frac{1}{2}\left(\frac{\partial^{2} V}{\partial x^{2}}\right)_{0}=-0,00010 \% \quad\left(\frac{1}{h}\left(\frac{\partial^{2} v}{\partial y^{2}}\right)_{0}^{2}=+0,000222\right. \\
=16^{0} \mathrm{ra}
\end{array} \\
& M_{3}=g^{\prime}=\frac{\partial_{\sin 2} h-\partial_{n} \sin 2 \theta_{n}}{\partial_{\cos 2 \delta}-\partial_{i} \cos 2 \theta_{n}}=\frac{-0,000175+0,000118}{-0,000280+0,000230}=\frac{-0,0000057}{-0,000050} \\
& D=0,00032 g \quad \lambda=1060 \quad D_{2}=0,000257 \quad \lambda_{i}=103^{\circ} 20^{\prime} \\
& \text { ly } 2 \mathcal{S}^{\prime}=1,14 \quad \text { 挂 }=\left\{\begin{array}{l}
4840 \\
2284 a^{\prime}=1149_{0}^{\prime} 9_{0}^{\prime}
\end{array}\right. \\
& O!=\frac{\operatorname{Din}^{2} \operatorname{Sin}^{\prime} \operatorname{Din}_{2} h_{n}}{\sin X^{\prime}}=\frac{-0,00005 z}{-0,75}=0,000076 \\
& \int+0,000107
\end{aligned}
$$

$$
\begin{aligned}
& A\left(\cos r_{1}-\cos r_{2}\right)+h\left(\sin r_{1}-\sin r_{2}\right)=a_{1}-a_{2} \\
& A\left(\cos r_{2}-\sin \lambda_{3}\right)+B\left(r_{i} r_{2}-\alpha S_{1}\right)=a_{3}-a_{2} \\
& A\left(\cos \theta_{1}-\cos \theta_{2}\right)\left(\sin h_{2}-\sin \lambda_{3}\right)-A\left(\cos \lambda_{2}-\cos \lambda_{3}\right) \sin \left(\lambda_{1}-\sin \lambda_{2}\right) \\
& =\left(a_{1}-a_{2}\right)\left(\sin g_{2}-\sin \gamma_{3}\right)-\left(a_{3}-a_{2}\right)\left(\sin \delta_{1}-\sin \gamma_{2}\right) \\
& A=\frac{\left(a_{1}-a_{2}\right)\left(\sin h_{2}-\sin h_{3}\right)-\left(a_{3}-a_{2}\right)\left(\sin S_{1}-\sin h_{2}\right)}{\left(\cos S_{1}-\cos \lambda_{2}\right)\left(\sin h_{2}-\sin h_{3}\right)+\left(\cos \lambda_{2}-\cos \lambda_{3}\right)\left(\sin S_{1}-\sin h_{2}\right)} \\
& C r_{1} \cos \left(\beta_{1}-g\right)=a_{1} \\
& \cos h r_{1} \cos h_{1}-\operatorname{cim} d, \operatorname{con} h_{1}=a \text {. } \\
& \cos \theta x_{1}-\cos \lambda_{y_{2}}=\mu_{1} \\
& c \cos x_{2}-c \sin x_{y_{2}}=a_{2} \\
& A=\frac{\left(a_{1}-a_{2}\right)\left(x_{2}-x_{0}\right)-\left(a_{3}-a_{2}\right)\left(y_{1}-y_{2}\right)}{\left(x_{1}-x_{2}\right)\left(y_{2}-y_{3}\right)-\left(y_{2} y_{3}\right)}\left(y_{2}-y_{2}\right)\left(y_{1}\right) \quad d \cos 2 s \\
& c \quad \operatorname{cram}(\delta,-\lambda)=a_{1}-a \\
& \cos \gamma_{\operatorname{ran}} S_{1}+c \sin \gamma_{r, \sin S_{1}=a,-n} \\
& \cos \theta x_{1}+\cos \delta y_{1}=a_{1}-a \\
& \cos x_{2}+\operatorname{cin} y_{y_{2}}=a_{2}-a \\
& c \cosh \left(x_{2}-x_{1}\right)+c \sin h\left(y_{2}-y_{1}\right)=a_{2}-a_{1} \\
& \cos \lambda=A \\
& \operatorname{com} \phi=\text { 力 } \\
& A\left(x_{2}-x_{1}\right)+A\left(y_{2}-y_{1}\right)=a_{2}-a_{1} \\
& A\left(x_{3}-x_{2}\right)+\infty\left(y_{2}-y_{2}\right)=a_{2}-a_{2}
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{\left(a_{2}-a_{1}\right)\left(y_{3}-y_{2}\right)-\left(a_{3}-a_{2}\right)\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)\left(y_{3}-y_{2}\right)-\left(x_{3}-x_{2}\right)\left(y_{2}-y_{1}\right)} \\
& \hat{y}_{3}=-\frac{\left(a_{2}-a_{1}\right)\left(x_{3}-x_{2}\right)-\left(a_{3}-a_{2}\right)\left(x_{2}-x_{1}\right)}{\left(x_{2}-x_{1}\right)\left(y_{3}-y_{2}\right)-\left(x_{3}-x_{2}\right)\left(y_{2}-y_{1}\right)}=\frac{\left(a_{3}-a_{2}\right)\left(x_{2}-x_{1}\right)-\left(a_{2}-a_{1}\right)\left(x_{3}-x_{2}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{2}\right)-\left(x_{3}-x_{2}\right)\left(y_{2}-y_{2}\right)}
\end{aligned}
$$



$$
x_{1} y_{e}
$$

$$
x_{n} y_{n}
$$

$$
\begin{array}{ll}
F(x, y) & F\left(x ; y_{i}\right) \\
& (i=1 \ldots n)
\end{array}
$$

$$
\begin{gathered}
\mathcal{F}=a x^{2}+2 b x y+c y= \\
\frac{\partial F}{\partial u}
\end{gathered}
$$

Peyervar

$$
\Delta=+0,0000888
$$

$$
\uparrow \frac{H}{2}=-0,000259
$$

## $\beta=+87^{\circ} 20^{\prime}$ <br> $\Lambda=+0,000230$


$4=0,000201$

$$
\begin{array}{lll}
\delta=7^{\circ} 30^{\prime} & \beta=+81^{\circ} 20^{\prime} & \Delta=0,000230 \\
& \alpha=+194^{\circ} & \frac{H}{h}=0,000260
\end{array}
$$

$$
\frac{H}{h} \sin (\alpha-\delta)+\cos \delta=\Delta \cos (\beta-\delta)
$$

$$
-0,0000294+0,0000295=
$$



```
marrovmachoty.
```



Eivig hnrofe \#

$$
\begin{gathered}
\delta=7^{\circ} \quad \beta=90^{\circ} \quad J=0,000 J^{\circ} 2 \\
\sin J=0,122 \quad \frac{1}{R} t_{i} i=0,0003 z \quad c=0,00028 \\
\alpha=190^{\circ} \quad \frac{H}{h}=0,00025^{\circ}
\end{gathered}
$$



$$
\begin{aligned}
& a x^{2}=12 \text { /manime } \\
& a=0,00000 y \text {, } \\
& 2 a x a \text { hagre }=\frac{\partial h}{d x}=0,000056 \\
& \frac{\mu}{h}=0,00025
\end{aligned}
$$

I)

$$
\begin{gathered}
\text { If } \alpha^{\prime}=\frac{-0,000422-0,0000457}{-0,00025-0,00007}=+\frac{0,0000882}{0,00062}=0,14 \quad \alpha^{\prime}=\begin{array}{l}
8^{\circ} \\
-172^{\circ}
\end{array} \\
A^{2}=0,0000000625+0,000000107+0,0000001855 \\
\Lambda^{2}=0,0000008840 \\
A=0,00062
\end{gathered}
$$

2) 

$$
\begin{gathered}
\text { if } p^{\prime}=\frac{0,00052-0,00007}{0,000044}=\frac{0,000150}{0,000044}=0,4 \quad \not \beta^{\prime}=7 y^{\circ} \\
\phi^{2}=0,00000027,04+0,00000070 \%-0,0000000282 \\
\lambda^{2}=0,0000000250 \\
>=0,00015
\end{gathered}
$$

$$
A \sin \left(\alpha^{\prime}-1\right)+\operatorname{cin}_{0,000464}=\cos \left(f^{\prime}-\delta\right)
$$

Evigh hurvk
I) $\quad \delta=7^{\circ} \quad \beta=0 \quad \eta=0,000277$

$$
\begin{aligned}
& \frac{1}{R}=0,00021 \quad i=680^{\circ} 1 \quad \text { ty } i=1,767 \text {. } \\
& \operatorname{sm} \quad \alpha=0,089 / 2 \\
& \text { im } r=0,122 \\
& \alpha=\frac{\frac{1}{R} t_{i} i=0,00037}{\frac{A t}{2}=0,00020} \quad \underline{c=\frac{1}{R+1 V^{2}} 0,00038} \\
& \text { 1) } \operatorname{ty} \alpha^{\prime}=\frac{0,0000174-0,0000451}{0,00020-0,00057}=\frac{0,0000277}{0,00058}=0,0486 \quad \alpha^{\prime}=\underline{+177^{\circ} / 10} \\
& A^{2}=0,000000040+0,00000010.7+0,00000055 \\
& A^{2}=0,0000000230 \\
& A=0,00058
\end{aligned}
$$

2) 

$$
\begin{aligned}
& \xi A^{\prime}=\frac{0,00007}{0,000277,0,000044}=-\frac{0,00027}{0,000022}=-1,15 \\
& \beta^{\prime}=-49^{\circ} \\
& b^{\prime}=-4 q^{\prime \prime} \\
& h^{2}=0,000000767+0,000000727-0,0000000394 \\
& b^{2}=0,000000865 \\
& \text { か }=0,000 \mathrm{cs}^{3} \\
& A \sin \left(\alpha^{\prime}-\delta\right)+c \sin J=7 \cos \left\langle j^{\prime}-S_{1}\right. \\
& 0,000 \underbrace{10,0000464}_{0,000145} \quad 0,0001155
\end{aligned}
$$

$$
\begin{aligned}
& \text { Anoutis } \\
& \frac{d l}{h}=-0,0006 b^{2} \\
& 0,0,00007^{8}\left|\begin{array}{c}
-6^{\prime} \\
-0,012^{x}
\end{array}\right| \text { henterne } \\
& \frac{d}{h} \sin (\alpha-\delta)+c \sin \delta=\Delta \cos (h-\delta) \\
& -0,00000^{18}+0,0000256=-0,0000775 \\
& \text { - 0,00006662 } \\
& \text { H2 } \delta=\left\{, 313 \quad 2 \delta=\begin{array}{ll}
52^{\circ}, 40^{\prime} & \delta=26^{\circ} 20^{\prime} \\
202^{\circ} 40,
\end{array} \quad \lambda=116^{\circ} 20^{\prime},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \nabla=0,000232 \quad \text { hanin } \quad X=116020, \quad D_{n}=0,000259 \quad S_{n}=100^{\circ} 30, \\
& \operatorname{tg} 2 \delta^{\prime}=\frac{\partial_{2 i n} \theta_{-}-\partial_{2} \sin 2 \theta_{n}}{\theta_{\cos 2} \delta-\partial_{n} \cos 2 \theta_{n}}=\frac{-0,000184+0,000118}{-0,000141+0,000231}=-\frac{66}{90} \\
& \dot{A}^{\prime}=\left\{\begin{array}{l}
-36^{\circ} 20 \\
143^{\circ} 40^{\prime}
\end{array} \quad S^{\prime}==-16^{\circ} 10\right. \\
& g^{\prime}=-18^{\circ} 16 \partial^{\prime}=\frac{8 \sin 28-y_{2} \sin 28_{n}}{\sin 28^{\prime}}=0,000112
\end{aligned}
$$



$$
\begin{aligned}
& \text { 1) }+0,000260+0,788 \\
& \text { 2) }-0,000099+0,917 \\
& 3)+0,000187+0,620 \\
& \text { 4) }-0,000039-0,070 \\
& \text { 5) }-0,0000057-0,375
\end{aligned}
$$



$$
51 / 2, / 0,4
$$

$$
\begin{aligned}
& 90 / 24 / 0,266 \\
& 28 /\left.38 \int_{80}^{38}\right|_{0,00020 / 7} ^{1,26}
\end{aligned}
$$

$$
\begin{aligned}
& 0,000099 \\
& \begin{array}{ccccc}
42 / 270 & 0,64358 & 400 & 0,07 & \\
27280 & 1929 & & 38 \times 20 \\
1,8086 & 182 & 0,000039 & 3140
\end{array} \\
& \text { Gs } \begin{array}{c}
390 \\
29820 \\
1,20
\end{array} \\
& 46 \int_{140}^{60} \quad 18 \text { b4 } 124810,10,372 \\
& 40 / 7,0 / 0,17
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { hient }}{\frac{\text { Trinhen }}{}} \\
& \beta=71^{\circ} \text { i }=>\times 30 \\
& \text { Sinoigi maynorb } \\
& \text { lisis } \\
& \beta=97^{\circ} 10, \quad \Delta=0,00074 \\
& \delta=8^{\circ} 30 \quad c=0,00028 \\
& \alpha=190^{\circ} 10^{\prime} \quad \frac{f l}{h}=\frac{0,00028}{} \\
& 120 \begin{array}{c}
110 \\
\hline 50 \\
50 \\
50 \\
50
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\begin{array}{c}
0,54 \\
29 \\
4170 / 200 / 0,176 \\
100 \phi 486 \\
11910108 \\
1,00001566
\end{array}}{0,00014} \\
& \frac{\begin{array}{c}
0,54 \\
24 \\
1,40 / 200 / 0,176 \\
1,004 \\
1,986 \\
1,001086 \\
0,00075
\end{array}}{0,00074} \\
& 21 \\
& 200 \\
& \frac{\begin{array}{c}
0,54 \\
24 \\
1,40 / 200 / 0,176 \\
1,004 \\
1,986 \\
1,001086 \\
0,00075
\end{array}}{0,00074} \\
& \frac{\begin{array}{c}
0,54 \\
24 \\
1,40 / 200 / 0,176 \\
1,004 \\
1,986 \\
1,001086 \\
0,00075
\end{array}}{0,00074} \\
& \begin{array}{c}
120 / 150 / 0,125 \\
3010 \\
2400 \\
600
\end{array} \\
& 20
\end{aligned}
$$

$-\frac{1}{\rho} x-\frac{1}{\rho} y$
$20^{\circ}$
$\frac{-0,000}{2} \sin$
$-0,0000081$
$\begin{aligned} & -0,0000168+0,000076 \\ & \frac{L l}{2} \sin (\alpha-5)+\operatorname{cin} \delta=0,000078 .\end{aligned}$
$\begin{aligned} & 0 / 00024 \\ & 0,077\end{aligned}$
$-0,00000812+0,000056348$
$\cos =\beta-\delta=$

$$
\begin{aligned}
& 009 \mathrm{C} \\
& \begin{array}{ll}
\mathrm{xO}_{2}-28 \\
0 & 3 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { gipmasia 12000'0-2626*inserasen - } \\
& 0281=d
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{s^{\sin } \frac{y}{z}-\sin t y}{\sin \frac{y}{z}-\cos t}=3 \sin \right\}^{2} \\
& 8 \sin \left(S-\frac{x}{2}-x m \pi\right)+\sin \left(\sin \frac{\partial}{2}-\phi \cos t\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \left(\rho-8 \operatorname{mos} \frac{y^{2}}{2}-(y-x) \cos \delta=\frac{2 b}{26}\right. \\
& \left(\rho-8(3) \frac{x}{z}-(x-8) \cos x=\frac{c b}{y C}\right.
\end{aligned}
$$

$59 \quad{ }_{9} x_{40}$

$$
\begin{aligned}
& 6 \\
& c^{x} \\
& \frac{6}{40} \frac{36}{26} 24.0^{0} \\
& C=\frac{1}{3700} \\
& \alpha=190^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\hbar t}{h}=\frac{0,04}{2,14 \cdot 70}=0,00027 \\
& \delta=9^{\circ} \\
& 30^{\prime} / 20^{\prime} / 6,7 \\
& \beta=100^{\circ} \\
& \Delta=0,7 \times 29=0,00020 \\
& 0,000231
\end{aligned}
$$

0,7
$0,060,200$

0,00027 . $\frac{1}{2700} \cdot 0,156=? 0,00020 x$

1) harth.

$$
\begin{aligned}
& \alpha=100^{\circ} \quad \frac{H}{d h}=\frac{1}{200 \cdot 20}=\frac{1}{4000} 0,00025 \\
& c=\frac{1}{\operatorname{spn} \theta} \quad \beta=-25^{\circ} \quad \Delta=0,0002 \eta \quad \quad I=10
\end{aligned}
$$

$$
\begin{aligned}
& c=\frac{1}{\operatorname{spn} \theta} \quad \beta=-25^{\circ} \quad \Delta=0,0002 \eta \quad \quad I=10 \\
& \frac{A L}{h}=\frac{1}{2500} \\
& +L \sin \alpha \cos S+h \sin S(A \sin p+c) \\
& \text { Lhin } \alpha \cos \delta-h \Delta \sin \delta \sin \rho+h c \sin \delta \\
& =H \cos \alpha+5+L A \cos \delta \cos \beta \\
& \text { Ll } \sin (\alpha-\delta)+h c \sin \delta=h A \operatorname{ar}(\delta / A)
\end{aligned}
$$

$$
\begin{aligned}
& c=\frac{1}{7 \mathrm{IVY}} \quad \delta=4^{\circ} 20^{\prime}+\triangle=0,253=0,00070^{\prime}+\beta=42^{\circ} \\
& \alpha=158^{\circ} \quad \frac{\angle L}{\hbar}=\frac{0,00025}{2,96}=0,0000845 \\
& \left.\begin{array}{l}
\cos \beta=0,7432 \\
\cos \alpha=-0,9272 \\
\sin \mu=0,6691
\end{array}\right\} \frac{1}{R}=0,0000008 \\
& \begin{array}{l|l}
\sin \alpha=0,6691 \\
\text { in } \alpha=0,0746 & g_{i}=1,2 \\
Z \delta=0,0787 & \frac{1}{R} S=0,00025
\end{array} \\
& \} \mathcal{E}=0,0787 \times \frac{1}{R}\{=0,00025 \\
& \delta=10^{6} \\
& \frac{\mu}{R} \operatorname{mon}(\alpha-\delta)+\cos \delta=\Delta \cos h-\delta \\
& -0,0000845 \times 0,4462+\frac{1}{7154} 0,07870= \\
& \text { प154 } / \frac{0,0,7 y_{1}^{8}, 75_{4}^{0}}{1 / 60} / 0,000011 \\
& \begin{array}{r}
238 \% \\
0380 \\
\hline 24687
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 0,000102 \\
& \begin{array}{l}
\text { MAGYAR } \\
\text { TUDDMANYOS AKADEME } \\
\text { KONYYTARA }
\end{array} \\
& \begin{array}{l}
\text { KONYVTARA } \\
\text { king }
\end{array} \\
& c=\frac{1}{9,880000} \text { Dathener } h=0 \\
& c=\frac{1}{7154} \quad \delta=40.3 \gamma^{\prime} \quad \Delta=0,066 \times 0.00009, \quad \frac{0,000106}{\beta}=0 \\
& \alpha=165^{\circ} \quad \frac{2 l}{h}=\frac{0,0003^{-}}{3}=-0,00017 \\
& \begin{array}{ll}
乡 2 D=\frac{\frac{106}{m}-\frac{13}{m}}{\frac{190}{m}-\frac{165}{m}-\left(\frac{41}{m}+\frac{106}{m}\right) \frac{81}{1000}} & 10,000,0000 \\
-\frac{97}{37}=2,6
\end{array} \\
& \text { asceioghs } \\
& \begin{array}{l}
\text { mand }=0,2 \pi y \\
\text { and } h=1
\end{array} \\
& \cos h=1 \\
& 3 \delta=0,081 \\
& \begin{array}{l}
\frac{1}{7154,1400} \\
\begin{array}{l}
28616 \\
2154 \\
1001500 \\
1085
\end{array}
\end{array} \\
& \text { 82) } / 110008 / 1400=\begin{array}{l}
20 \\
20
\end{array} \\
& 0,00017 \times 0,18+0,000011 \\
& 0 \text { ourb, }
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\underline{158 \quad \frac{\partial 1}{\partial x}=0,000082 \quad 3 / 0,00025 / 83} \\
& h=52^{\circ} \quad \frac{M}{\partial x}=0,\left.000104\right|^{\alpha=158^{\circ} \frac{N H}{h}=0,000822}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial V}{\partial x^{2}}=-\frac{1}{r x}+3 \frac{x^{2}}{r^{2}} \\
& \frac{\partial^{2} v}{\partial 1^{2}}=\frac{\partial y}{\frac{27}{x}} \\
& \frac{\partial V}{\partial T}=\frac{\partial U}{\partial x} \cos h+\frac{\partial v}{\partial y} \underline{\sin h} \\
& y=x=\operatorname{sen} \delta \quad y=\sin \text { \& } \\
& \frac{d x}{\partial 0} \cos () \\
& \frac{\partial^{2} V}{\partial s^{2}}=\frac{\partial^{2} V}{\partial x^{2}} \cos ^{2} \lambda+\frac{\partial^{2} V}{\partial x^{2} y} \sin \delta \sin \alpha+\frac{\partial^{2} V}{\partial x \partial y} \sin h \cos d+\frac{\partial^{2} U}{\partial y^{2}} \operatorname{cin}^{2} \alpha \\
& \frac{\partial^{i} V}{\partial x^{2}}=\frac{\partial^{2} V}{\partial x^{2}} \cos 2 \lambda+\frac{\partial^{2} V}{\partial y^{2}} \sin S+\frac{\partial V}{\partial x \partial y} \sin 2 \delta \\
& \frac{\partial^{2} V}{\partial \pi^{2}}=\frac{\partial^{2} V}{\partial x^{2}} \sin ^{2} \gamma+\frac{\partial^{2} V}{\partial y} \cos ^{2} \delta=\frac{\partial^{2} V}{\partial x^{2}} \sin \cos \\
& \frac{\partial^{2} v}{\partial x^{2}}-\frac{\partial^{2} v}{\partial x^{2}}=\left(\frac{\partial^{2} v}{\partial x^{2}}-\frac{\partial^{2} v}{\partial y}\right) \cos 2 \delta+\partial^{2} \frac{\partial x}{\partial x y} \sin 2 \delta \\
& \text { ha } \frac{\partial V}{\partial \times y}=0 \text { akchor. } \\
& \left(\frac{\partial^{2} V}{\partial x^{2}}-\frac{\partial^{2} v}{q}\right)^{\sin } 2 \delta x, \\
& y=\{\sin x+\eta \cos x \\
& i-c \sin -\operatorname{con}^{2} x-S \\
& \left.\frac{N}{\sqrt{\xi}}=\operatorname{Hen}(i-8-c\} \sin -\operatorname{con} \theta\right) \\
& \frac{\partial V}{\partial D_{1}}=\mu \text { m }(\square) \\
& \left(\frac{\partial V}{\partial \xi^{2}}\right)_{0}^{2}=\frac{\partial l}{\partial} \\
& \frac{\partial x}{\partial \cdot \gamma}=\operatorname{Lin}(\lambda-\gamma) \\
& \left(\frac{\partial^{2} V}{\partial \xi \eta}\right)_{0} \frac{\partial l}{\partial \eta} \cos (i-\eta)-H \sin (i-\lambda)\left(\frac{\partial}{\partial \eta}-\cos ^{2} t\right) \\
& \frac{\gamma_{i}}{D_{\xi}}=J \cos (\theta-\beta) \\
& \left(\frac{\partial U}{\partial \cos )_{0}}=\frac{\partial H}{\partial \xi} \sin (i-j)+H_{\cos (i-i)}\left(\frac{\partial i}{\partial \xi}-c \operatorname{cin} \theta\right)\right.
\end{aligned}
$$

Foran myyn.

$$
\begin{aligned}
& \delta=4^{\circ} 30 \quad J=0,000702 \quad \quad \beta=42^{\circ} \\
& \frac{H}{a}=0,0000845^{\circ} \quad \sigma=158^{\circ} \\
& \cos h=0,7422 \\
& \begin{array}{ll}
\cos \alpha=-0,927^{2} \\
\sin h=0,6691 & \frac{1}{R}=0,000 \cos
\end{array} \\
& \text { 2m } \alpha=0,3746 \\
& \text { 75 } J=0,0787 \quad \xi^{\circ}=1,2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1) I, } \alpha^{\prime}=\frac{0,0000319-0,0000198}{-0,0000788-0,00025}=-\frac{0,121}{3,29}=-0,027 \\
& \alpha^{\prime}=\left\{-2^{\circ} 10{ }^{\prime}\right. \\
& +178^{\circ} 50^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& X^{2}=0,0000001076 \quad \lambda=0,00033
\end{aligned}
$$

2) 

$$
\begin{aligned}
& \text { th } p^{\prime}=\frac{0,0000682-0,00025}{0,0000758+0,0000198}=-\frac{0,0007820}{0,0000956}=-1,904 \\
& 力^{\prime}=-63^{\circ} \\
& B^{2}=0,0000000104+0,0000000625 \quad \beta^{\prime}=+117^{\circ} \\
& b^{2}=0,0000000424 \\
& A= \pm 0,000206 \\
& p^{\prime}-60^{\circ} \quad b=0,000206 . \\
& A \ln \left(\alpha^{\prime}-\delta\right)+c \sin \delta=\beta \cos \left(\rho^{\prime}-\delta\right) \\
& 0,00093 \cdot 0,1164+0,000011=3 \cdot 0,2807 .
\end{aligned}
$$

$\frac{6}{\sqrt{134}}$

$$
\frac{\frac{a l l}{\partial \rho}=\operatorname{ll} \cos (\gamma-\alpha)-\frac{2}{R} \cos (\gamma-\delta)}{\left(r_{-}\right)}
$$



$$
\begin{aligned}
& \frac{d h_{1}}{d \alpha_{i}}=H \cos (\delta-\alpha)-\frac{z}{R} \cos (\gamma-\delta) \\
& \frac{1}{h} \frac{d h}{d \alpha}=\frac{\mu}{h} \cos (\alpha-\alpha)-\frac{1}{R} \operatorname{tg} i \cos (\alpha-S) \\
& \frac{\partial i}{\partial J}=J \cos (\lambda-1 s)-\frac{1}{R} \operatorname{tg} i \sin (\gamma-\delta)<\text {, }
\end{aligned}
$$

$$
\begin{aligned}
& A \cos \alpha^{\prime}=\frac{\mu}{L} \cos \alpha-\frac{1}{R} \hbar i \cos \delta \\
& \alpha \sin \alpha^{\prime}=\frac{\mu e}{h} \sin \alpha-\frac{1}{\pi} \sin \delta \\
& \hbar \alpha^{\prime}=\frac{\frac{U}{\pi} \sin \alpha-\frac{1}{R} \sin \delta}{\frac{L}{L} \cos \alpha-\frac{1}{R} \operatorname{tin} \delta}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Bon} \mu^{\prime}=\operatorname{Jon} \beta+\frac{1}{R} \sin ^{2} \sin \delta \\
& \text { tam } \beta^{\prime}=7 \sin \beta-\frac{1}{\beta} \xi^{i} \cos \delta
\end{aligned}
$$

$$
\begin{aligned}
& \beta^{2}=J^{2}+\frac{1}{R^{2}} \pi^{2}-\frac{2}{Q}\left(\frac{5}{R} \hbar i \sin (\lambda-\delta)\right\}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Enivig hincs IV } \\
& \delta=2^{\circ} \quad J=0 \\
& \text { un } J=0,122 \quad \frac{1}{\pi} 4 i=0,0023 z \quad C=0,0028 \\
& \alpha=185^{\circ} \quad \frac{\mu}{h}=0,000064
\end{aligned}
$$

1) 

$$
\begin{gathered}
\operatorname{tg} \alpha^{\prime}=\frac{-0,0000517-0,0000451}{-0,000264-0,00007}=\frac{0,0000768}{0,000754}=0,105 \quad \alpha^{\prime}=\int^{6^{\circ}}-1 \% 40 \\
A^{2}=0,0000001325+0,000000107-0,0000002654 \\
R^{2}=0 \quad A=0
\end{gathered}
$$

2) 

$$
\begin{aligned}
& \operatorname{tg} \beta^{\prime}=\frac{-0,00027}{+0,000044}=-8,4, \quad s^{\prime}=9+83^{\circ}-20 . \\
& \phi^{2}=0,000000107 \\
& \phi=0,00037
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(\frac{1}{\rho_{2}}-\frac{1}{\rho_{1}}\right) \sin \alpha \cos \alpha\right)^{2}+\left(\frac{\cos ^{2} \alpha}{\rho_{1}}+\frac{\sin ^{2} \alpha}{\rho_{1}}\right)^{2} \\
& \frac{\sin ^{2} \alpha \cos ^{2} \alpha}{\rho_{2}^{2}}+\frac{\operatorname{in}_{1}^{2} \alpha \cos ^{2} \alpha}{\rho_{1}^{2}}+\frac{2}{\rho_{1} \rho_{2} \sin ^{2} \alpha \operatorname{sis} \alpha} \\
& \frac{\sin ^{4} \alpha \alpha}{\rho_{2}^{2}}+\frac{\cos ^{2} \alpha}{\rho_{1}^{2}}+2 \\
& \sin ^{2} \alpha
\end{aligned}
$$

$$
\begin{aligned}
& -0,172 \\
& \begin{array}{l}
\frac{1725}{2} \\
\hline 86^{85} \\
\hline 4325
\end{array} \\
& 0,0000002704 \\
& 35 \\
& \therefore \text { avernorn } \\
& \frac{8 \sqrt{818}}{392} \\
& \frac{8811}{38} \\
& \begin{array}{l}
\text { bo / } 91 \\
281 / \text { \& }
\end{array} \\
& \begin{array}{ll}
\frac{25}{1}=r & 8890 c^{\prime} 0 \\
0.48 \mathrm{hst}
\end{array} \\
& \text {, O\% = 3 2ROO } \\
& \text { gcber } \frac{(280)}{0^{2}}=y \\
& =2 \times y \\
& \begin{array}{c}
44 / 150 \\
152 \\
180 \\
176
\end{array} \\
& 0,000000185 \\
& \frac{\begin{array}{l}
185 \\
172 \\
62
\end{array}}{\frac{684}{28}} \\
& \begin{array}{r}
52, \\
27 \\
15
\end{array}
\end{aligned}
$$

$25 / 0,020 / 0,0008$
$\left.\frac{29}{25000} \frac{8}{10000}<2 / \frac{0,00080}{\frac{66}{i Y_{0}}} \right\rvert\, 0,000264$.

26


$$
\begin{aligned}
& \frac{0,087}{2548}
\end{aligned}
$$

$$
\begin{aligned}
& 132496 \\
& \begin{array}{ll}
704 / 7 \text { by }_{3406} 0,105 & 0,000264 \\
& 0,00074
\end{array} \\
& 1456 \\
& 0,000000 \frac{2548}{269^{36}} \\
& \begin{array}{l}
1325 \\
137 \\
\hline 169^{5}
\end{array}
\end{aligned}
$$


$\varphi=47^{\circ}$ ys ' is $\lambda=20^{\circ} 20^{\prime}$ 'ैtzeno" Eeclimins site

$$
\begin{aligned}
& \sum_{\substack { 1 \\
\begin{subarray}{c}{30^{\circ} 30 \\
\varphi=42^{\circ} 45^{\phi}{ 1 \\
\begin{subarray} { c } { 3 0 ^ { \circ } 3 0 \\
\varphi = 4 2 ^ { \circ } 4 5 ^ { \phi } } }\end{subarray}}=0,000045
\end{aligned}
$$

$$
\begin{aligned}
& \varphi=47^{\circ}{ }^{\prime \prime} \\
& \sum_{\lambda=30^{\circ} 0^{\prime}=0,0000668} \\
& \varphi=4720 \\
& \varphi=7^{\circ} \partial 0^{\text {on è }} \lambda=20^{\circ} 0^{\prime} \text { en . átine.." } \\
& \text { Eulimatis gribe }
\end{aligned}
$$

$$
\begin{aligned}
\varphi= & 48^{\circ} 0^{\prime} \text { i } \quad \lambda \quad \lambda=20^{\circ} 30 \text { in ithemo' } \\
& \text { deeliankig grithe. }
\end{aligned}
$$



MAGYAR
LYOOS AKADAMEA
mTBOMKNYOS AKAD
MONTVIKRA


$$
\begin{aligned}
\varphi= & q g^{0} \quad l=3,^{0} \text { in ammens" } \\
& \text { Oeclinitio' girhe. }
\end{aligned}
$$




MAGYAR





Indinctoo grithe $\varphi=48^{\circ} / 5$ es $\lambda=20^{\circ} 20^{\prime}$ an $\frac{L_{2}}{}$





