
M. 5098/32-36. Et in lorand jerreki a fradelm felmini femilisepex

Mises lettes

Z+1= 20' min S

Johnstinal

Jelsonthely

Felsonthely

TUDOMANYOS ATADEMA.

KONYYTARA

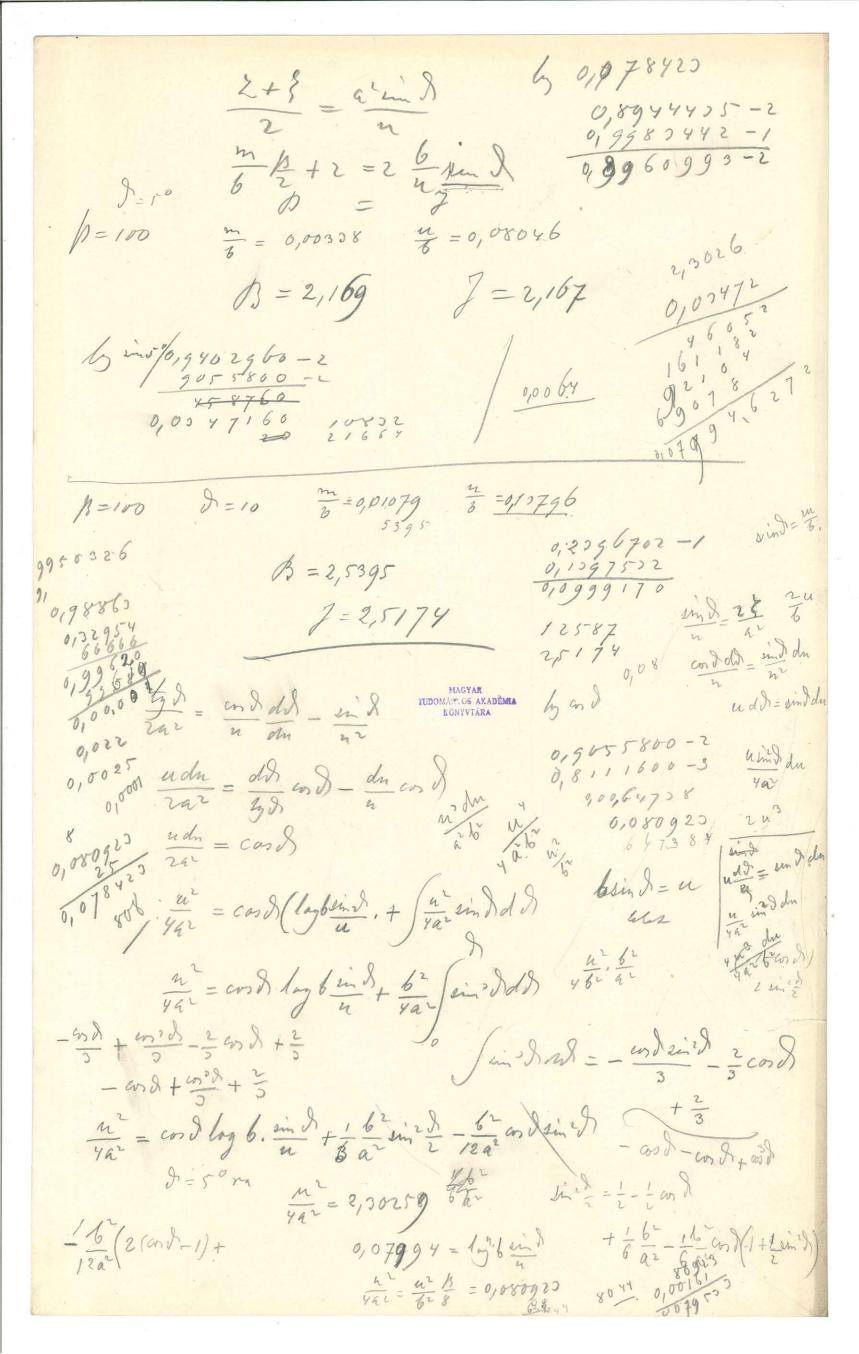
da

3)

B= 00 1 =0,08046 m = 2,1844) m=0,00008 ly = 9905 5800-2 by m=0,5289167 by = 0,0090387 5289167-3 0,4898531-1 0,4341967-4 6,0010000-2 0,017852 900.527196 0,1505150-1 6,7625777 0,2626825-19615 0,2925992-2 0,3293281 -2 09197270 -0 82124 1/1825507 0,7121274-2 0,6,5/4203 2 3/6 2/2 $\frac{\xi}{R^{\nu}} = \frac{1}{6}$ る = た m 2 (1 + 25 3 H2 25 = \frac{1}{6} = \frac{1}{5} 0,60996796-2 是 意.

> magyan tudomártos akadéma könyvtára

25 0,00,28


0,095

$$\frac{m}{4z} + \frac{m}{a} + \frac{m$$

1 = 100 16666 = 0,05 - 0,001/61 +0,00013/5 -0,000014 9,001784 120/1000 /0,0083333 6 = 0,048348 4,066666 416,6666 0,00800 =0,04865 3200000 /0,0000315 1+0,02672+0,00028 0,02700 20000. 1280000000 128,0000 /180000 / 18,000 ly m = 0,68427.85-2 /1800000/0,000014 by 12 = 0,3687570 - 3 MAGYAR TUDOM/**/US AKA**DÉMA** KONYYTÁRA 10,02672 = 61+67 n = 0,00,2,0,75. 14 = 0,00,000 5-464 192/0,05464/0,00028 1634 0,6986673-2 ly \$ 2 = 0,6870969-L 1,027 0,04865

S=50 なー タンノナをかたナガルがり 0,0 8046 0,8111600-2 0,00 64708 1,6250500-5.0,00,00,41910 1+0,00,08005 132 /0,419 10/0100518) 1108095 351 1,083100 0,8689303-2 ANAGANA SOYAN ANATAWAN ANATAWAN 0,07095 Zsin 2 2 a²u sin - 2 + a² 2 - 5 sin d m = r (1-652) 1 2 - 1 r cos desind. - fr (12-rains) = 22 (2 - sind ers 2) + m Tr (3 t - m) - intusin a.

```
5 + 2 in 10 - 2 2m 50
                                0,08/2665
       d=0,08726646
                               0,17,0906
     md=0,0871557
    en ed = 0,170 6482
                                        ly 1-43 = 3419 6108 =3
                       0,6296-2
                       0,2793592-5
                                          by ( - und ) = 4,8092016
                        3010000
                      0,220688
                                          (1-and) = 7,2588224
                      6,5803892-3
    d + maind-ring =0,0002208
                                        po (1- mo a) =0,580 2885-2
           d- em d
                       = 0,0601108
of + 2m d cosd = 5 cm d cosd - 5 cm d = d + lind cosd - 2 cm d + 5 lind d.
                 0,8208880-4
                                      0,000 66204
                                      + 0,0002207 = 0
     d + emdond - fant mid - 5 in 4.
                                           2,4196108-4
                       0,3439991-4
4,839 2206
                                           0,4641506-2
                                                 0,029117
                      97636099
                      5,8024
                      15,2482
  um²+ rum } - m² } ,5,80 Ly = au 0,000 8050 + am 0,029112
  a a +2 m a - m s. 5,8024 = m 0,0038053 + 0,004/17
                                 MAGYAR
MUDOMÁTYOS AKADÉMA
KÖNYVTÁRA
                 15,2442
  mm = + 2/3/m - m 5,8024 = m 0,0083124 + 0,029117
0,013598 + 0,019615 = 0,019615 = 162 = 62 m 6 a
                            /3 = 100 rm
     1608-31, 14 22 0, 17452
0, 16390
```


(n in Sub) Int the bsm & = e man tyd= cont dh - em & be in I ndn = cordat fra Hophis, I who ndn = det - und de - des to dysing to your of you or = mg under = dd as d - du (1- 2min fu) dos } $=\frac{dS}{\sin S}-\frac{dN}{n}\sin S-\frac{dn}{n}+2\frac{dn}{n}\sin S$ + 1 dn in co n dn = dd - dd sond - dn + 1 ndn min's = 1 en of a udh sing) udn (1- 2) = 4 ar (1- ar) = by 26 to 2 - 2 2 min 2. は変え wo 8 - 1 0,6400921-2 0,2193592 udu e in 010017807

KTI (Z+ 5) u2 = 2 Th fasin 8 2+3 = ohl con) + is 2+ } = sm & = - con Solu + ohr con I do $\frac{u^2}{44^2} = \cosh\left(\log\frac{\sin\theta}{n}\right) - \int_{-\infty}^{\infty} \frac{dx}{dx} dx dx dx$ he de o md = pe. m= en & loy beind of har an Add nom Idd fire in Inde $\frac{m}{6} \frac{k}{2} + 2 = 2 \frac{6}{n} \lim_{n \to \infty} \frac{1}{n}$

h=00-4= d 6 = c.c. xx log 6 = to etto da by = loge + da m & stong to ind d(o) + dim da

$$\frac{1}{4} \left(\frac{1}{4} + \frac{1}{4} \right) = 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi \int_{-1}^{1} \left(\frac{1}{4} \sin \left(\frac{1}{4} + \frac{1}{4} \right) - 2\pi$$

ty (8,+ E) = 2 à

2,3026 m = log 26 ty = - 2 hin & + al (Pian) 0,03527 $\beta = 100 = 5^{\circ} \frac{u}{6} = 908046$ 492 = 4 62 4 = 4 690 78 2 7 0 2 by 0,08046 = 0,905 5800 -2 0,049 0,0064738 1,00080923 0,6096796-2 n = 0,080g 23 0,279.3582-3 0,001300 2,3026 903554 0,6400931-2 115130 3910000 0,94/1231-2 73/15/30 3055800 -2 0,0055431 0,94029 60 0,0347.160 ly 26 4 = 0,081834 em = 2 = 1 im & vinit = 0,003806 y in ? = im. I 0,078628 0,019875 log 6 m 8 = 0,07995 0,16.1.85 0,42 43 48555 64740 0,1757. 0,0,70291455 1,1757 ndn = and - down & - dn + 2 dn single Mdn

udu = cosd (de du) is = cosd (loging - login) - S(loging - login) in I dels

type in the second of the se Chy in the word of the second long X'=X

The delight in X = e

who was don't will sind the form of the sind from the til cost of log in 8 + 2 laying to by the log to be the laying the The condition of the co

女生"一个 ltg+ 1'tg+" はサナビラチョン $\frac{f}{f} = \frac{1}{1 + \frac{1}{2}}$ $\frac{f}{f} = \frac{1}{1 + \frac{1}{2}}$ $\frac{f}{f} = \frac{1}{1 + \frac{1}{2}}$ $\frac{f}{f} = \frac{27.37}{192 + 6} = \frac{27.37}{192} = \frac{27$ サナーモナン by= 4 by=0,17/29 4= 9°45' in 4=0,168/761 D= 3006140" 2,554 0,5,065 $\frac{4y = 0, 47094}{2167 | 5535 | 2,5542}$ $\frac{4y = 0,47094}{4 = 25010'}$ $\frac{4y = 9,57945}{1296451}$ $\frac{12934}{1296451}$ $\frac{111650}{111650}$ $\frac{111650}{111650}$ $3 = 3^{\circ}36^{\circ}7 = 216,7 = 1,15$ $3 = 3^{\circ}36^{\circ}7 = 216,7 = 1,15$ $3 = 3^{\circ}36^{\circ}7 = 553,5 | 1 = 3,06$ $\frac{3' u}{3' u'} = 1,2936 \qquad \lim_{N \to \infty} \frac{3' u}{3' u'} = 0,1118000 \qquad \frac{3' - 2,5542}{3' u'} = 0,1118000$ $\frac{0,1118}{184208} = 0,8426216 \text{ by has } = \frac{1}{19}v.\times 2,0026 = 0,28743$ $\frac{23026}{23026} = \frac{4166792}{194320124} = \frac{6,964}{9,25743} = 27,041$ 9 = 1,600

 $\frac{u^2}{4u^2} = \cos \sqrt{(\log m^2 m^2)} + \frac{1}{4u^2} \int u^2 m du^2 du^2$ $\int u du = mv - frage$ $\frac{u^2 + dy}{ya^2} = \int_0^{\infty} \int_0^{\infty} u^2 dy dy = \int_0^{\infty} u^2 \cos \theta + \int_0^{\infty} \int_0^{\infty} u dy dy$ $\frac{u^2 + dy}{ya^2} = \int_0^{\infty} \int_0^{\infty} u^2 dy dy + \int_0^{\infty} \int_0^{\infty} u dy dy + \int_0^{\infty} \int_$ $\frac{u^2}{ya^2} = \cos \theta \log \mu \sin \theta + \frac{u^2}{ya^2} \cos \theta - \frac{u^2}{ya^2} \int_{a}^{b} + \frac{u^2}{ya^2} (2 - \cos \theta) = \cos \theta \log \mu \sin \theta$ $\frac{u^2}{ya^2} (2 - \cos \theta) = \cos \theta \log \mu \sin \theta$ a to the second of the second the Cond cont lay in I - lay pe and huy mid - toppe. - by (fin) the and (long in a - in the hope) has he had - (2-wsh) = cost by and h. A log linds - lype 1+3 cost by and my finds M = 1 + 3 x

23472 0,6858110 99700 99326 $\frac{hm}{a^2} = \frac{m}{h} = e^{\frac{\pi}{a} + c\frac{\pi}{a}}$ m = m 6 a = m /2 か=でんた $\frac{h}{a} \frac{b \sqrt{\frac{m}{6}}}{0,4343} = \frac{m}{a} - c \frac{\pi}{a}$ h=98 = 49. (my 76 = m/2 = -6) m =0,14624 = =0,21855 0,1650662-1 0,6795 mis mil. B=8 sa sienten ly = 0,4343 (m-1,221 t) /2 0,4200 1=8 × 9 = 0,60947 = 0,42476 0,4240 0,6281436 8686 17372 B=L -9182406 # = 0,8182 m 0,6572 - 572 0,4243 0,964812 0,8182 1.6 3 6 4 24546 h = 0,8/60005 17372

 $\xi + m - \frac{r^2}{u^2}(u - r\sin \alpha)(\alpha - \sin \alpha \cos \alpha) + \frac{m^2}{3u^2}(3r + m) = \frac{\alpha^2 \sin \alpha}{u}$ V= m &. { + m = m2 (u = rind) (d - lind cond) + m (3r+m) 4 sin 4 2 - armdyingd 02000

$$\frac{z^{2}-\xi^{2}}{z^{2}-\xi^{2}}=\frac{2a^{2}\sin(\frac{x}{2}-2a^{2})}{z^{2}-\xi^{2}}=\frac{2a^{2}(\cos x-\cos x^{2})}{z^{2}-\xi^{2}}$$

Lephento 19 Mo 5098 /33 lup. 20 455 45-5a in fort. 99,4 399 99,3 99,4 99,2 402) 99,1 MAGYAR - LUDOMÁ**YOS AKADÉMKA KÖNYVTÁRA I male viret lahur lahitre is from wiret follower 458 temp 21 Flycermond flinter 455 t = 55,8

May Memorates, 171 Sayalacheros by servet a gozyminsal 311,5 301,5 aleshora 160° - 13,08 atrosp. 308,5 170 - 16,88 180 - 21,27 " 190 - 26,10 " 301 200 - 31,65 " 297 In melynto edegras og ing lepatlant i milur ign ren lett promiting og gry vygel ny trian W Johnal walls 451. Vipel less exister 20° Colomo mil. a = 3,828 I h=8,5 }= 680 IT u= 9,45 } = 704 § = 715 200 III u= 10,8 $\xi = \frac{719}{200} = 3,595$ $\frac{\xi}{u} = 0,008$ $\frac{a}{\xi} = 1,065$ TV u = 11,7 $\frac{8}{8} = \frac{716}{200} = 3,58$ $\frac{8}{5} = 0,267$ $\frac{a}{5} = 1,069$ I u= 13,4 $\begin{cases} = \frac{713}{200} = 3,565 & \frac{1}{4} = 0,241 & \frac{a}{2} = 1,074 \end{cases}$ VI 4= 14,8 $\xi = \frac{707}{200} = 9,735^{\frac{1}{2}} \frac{\frac{1}{2}}{n} = 0,189$ $\frac{a}{\xi} = 1,083$ VII n = 1817

1

On alwholm vonellevely, 7 = 20 mel $5 = \frac{457}{200} = 2,255$ 2n = 14,97. u = 7,5 $\frac{1}{u} = 0,304$ a sirving negletorous 20 plais 0,870

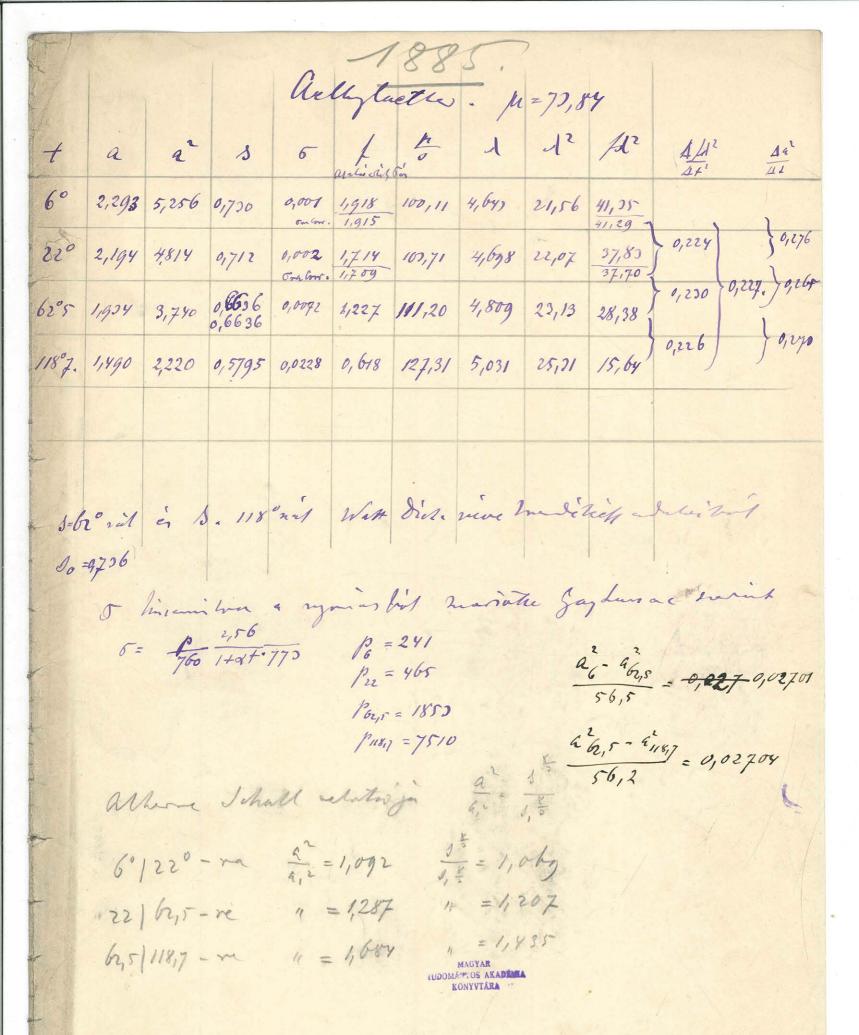
A sirving negletorous 20 plais 0,870

A sirving negletorous 20 plais 0,870 $a = 1,066 \times 2,255 - \frac{1}{1,0036} = 2,394$ a gig enrary $6 = \frac{p}{a t_m} \frac{1}{1+at} \frac{1,59}{773}$ they well at 5 = 2,394

adalah a pris a corrates by. d,=5°10'=310'. d2=32°=1920'

$$A = \frac{4}{\xi'} \left\{ \frac{1}{1 + \frac{1}{2} \frac{\cos \frac{3t'}{2} \Delta J_2 - \cos \frac{3t'}{2} \Delta J_3}{2 - \sin \frac{3t'}{2}} \Delta J_3, \quad \Delta J_1 = \frac{d_1}{2} \frac{\frac{3t' - h}{n n'}}{2 - \frac{3t'}{2}} \right\}$$

$$\Delta J_2 = \frac{d_2}{2} \frac{\frac{n - h}{n n'}}{2 - \frac{3t'}{2}}$$


er endlin a visken lembre d'=2° d'=28°

A = \frac{a'}{5!}\frac{1}{1+0,00019\Delta 2-0,00024\Delta 3, +) \Delta 3, \end{a}, \end{a} \text{ periselher.}

& a (1) entity

4 mine wouldness

Jenti ad talled. pa=45,9										
2.	A /	4	0	. 6	+1	pr o	d	1	fol2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20°	2,394	5,731	0,870	0	2,321	56,7	3,840	14,75	34,23	= 0,107
99,2	2,119	4,490	0,724	0,003	1,641	62,5	2,964	15,71	25,78	1 0,169
-	-	2,534	0,612	0,025	0,744	75,0	4,217	17,78	13,23	
	(1 1 2 99 DI)20	0,0157	12/17 11/95	0,0251					

Prismatiles worths is where the red legger 3, n, a unulhøjsty a his sumikudora I' is a a invettre juliant vig ther. $\frac{1}{5} = avi \left(1 + \frac{1}{5} \frac{a}{u} \right) \left(\sin \frac{\lambda_1}{2} - \sin \frac{\lambda_1}{2} \right)$ } = a V2 (1+ 1 4) in 2 - in 3) ande legen di= \$8'+18, di= di+18, selles
a hat she is she a prisantilus correctivo di $\frac{\xi}{\xi'} = \frac{\alpha}{\alpha'} \frac{(1 + \frac{1}{5} \frac{\alpha}{\alpha})}{(1 + \frac{1}{5} \frac{\alpha'}{\alpha'})} \left(1 + \frac{1}{2} \cos \frac{\lambda_2}{2} \Delta \lambda_2 - \frac{1}{2} \cos \frac{\lambda_1}{2} \Delta \lambda_1 \right)$ din 32 - in 2 Which $a = \frac{a'}{\xi'} \frac{\xi'}{1 + \frac{i}{2} \frac{a'}{n}} \frac{1}{1 + \frac{i}{2} \frac{a}{n}} \frac{1}{1 + \frac{i}{2} \frac{a \frac{\partial x}{\partial x} + \partial x - a \frac{\partial x}{\partial x}}{a \frac{\partial x}{\partial x} - a \frac{\partial x}{\partial x}} \frac{1}{2} \frac{\lambda}{n}$ The ag is chewither my eis what his lens infilre serve is that of that is in yoursel above liketo. $A = \frac{a'}{2!} \left\{ \frac{a'}{1 + \frac{a'}{2}} \frac{a + \frac{a'}{2} A - a - \frac{a'}{2} A A}{a + \frac{a'}{2} - a - \frac{a'}{2}} \right\}$ Peldril a vait eister ile és estrar expleterabre leger Mb. S'= 80° dens d'= 2°45' $A = \frac{a}{\xi'} \begin{cases} \frac{MAGYAR}{1 + 0,00024 \frac{A}{2} - 0,00024 \frac{A}{2},} \end{cases}$ MAGYAR 1UDOMÁNIOS AKADÉMKA
KONYVTÁRAa hot Id, és Id, prøggerorelber varres høfegepre a hal Adi = 2 noi n'a vije og ge melgelige elevolig is $\Delta S_{\ell} = \frac{\alpha_{\ell}}{2} \frac{n-n'}{nn'}$ e pilde entlik d,=7=420' 42 = 24° = 1440

1885 aug. 21 Tanterember, evertsavas ethyl jeger vispen. Tengre times 3°-2°,5 Kulso a tres = 14,5 Julverdegs 1,1 mm. Inha høme ihn vighen I brigg allerte. Teny. 22,8 Mera alkolda hegyve 447 445 445 vipe hombien megitive 4273 48°5 ign melyster ford. 4263 49,5-427 50 42x } 4805 my / 49°

yelles he the and the rightene Eres Kiroll 445 jegte teve. Jezides " Virtus almaro holling 461 12/2 45715 Sjota lengeloutura ruber e 210,5 477 MAGYAR TUDOMÁNYOS AKADÉMA KÖNYVTÁRA 446 ij the digle tere.

E-ben, Slangeneway Myl 6-10-Milsoahier 14,5 J cyber Juliany 1,12, in. belos étares = 12,2 18-19 5 cm2 Tup, 210 425,5 Tep. 110, alcoholbatere, Terperatur 21 Alwhol Jarahan mary by . 27.3 375) 77,4 mysel lengo It 373) 78 275) 78/2 27年7月7月 Un con.

My 22, Viginoris I Vanlyfalm eis hunds 18,3 atmis lehi itim 17.

Ap Mes is wretnessy:

u=8,5

a= u = 8,5 a = 3,8247085 7085 708,5 708,5 708,5 708,5Myamara eso hanyasever, aethylher. 680,5 t= 22 I Epruvetta en Anter eidmens' 19,4 luhi unis 18,2 Az hanyasavas aetlylher u = 9,6 a = 3,824 f = 3,456690,5 69113 \$ =0,360 2 = 4,106 Aellerher in Erresachor $\frac{3}{4} = 0,375$ $\frac{2}{5} = 1,062$ 7205 | mo

Theso Eprouvette huho atmero 21,5 min. belio imo 20 4 evitar és éthere. n = 10,2 Tegeration 22 400,5 400,5 400,5 400,5 8 = 9,66b 4 = 10,2 3 = 0,05g = 1,048 Hanygasavo assly Char Ilai Hastoyfeli com Anilos eidensinge = 28, Domine her almos 27 Erretsen i Etherher. n=13,5 }= 3,676 $\frac{3}{n} = 0,272$ $\frac{a}{3} = 1,040$ MAGYAR TUDOMA**.OS AKADÉMA KONYVIÁRA 7061 725,5/735,2 Milso attrice of 82,6 favor byrg 0,97 bution attrices 30,6 I Expipetta u = 15,3702,5 $\xi = 3,665$ $\frac{\xi}{n} = 0,240$ $\frac{a}{\xi}$ 1,043 700,5

dry, 26. Euctson my eggne Tuy. 21" Piphen. Fengo. 21,2. 3=2,21 n=7,9 $\frac{1}{4} = 3,03$ $\frac{\alpha}{5} = 1,043$ Jenys. 4° $\xi = 2,26$ u = 7,3 $\frac{4}{3} = \frac{3}{2} = 0,310$ $\frac{a}{\xi} = 1,044$ 452 Tegs. 4,2 71514 45115 fromaling 9917 288 100,2 3,88 100,2)288 100,23389 1000) 288 99 > 388 100,2) 388 100,2 } 389 886(2,001 95,63789,5

Hyra , who ho've sibleting ingle tere. Jugo . 21°2 442 Oblivealin all beon the. Teng. K Therm. 22 NT=23 his Them 119 N. 121 441,5 441,5 44115 K.T. 119 NT 121 milegitue. K.T. Harris 1195 270 119,5 377 120) 370 you letite 118,3 077 K. T. 20° 119,57 370 1442 44) 120 277 442,5 445 120) 272 119 275

Legiderous, rypl tele. I. cro eprometta linko atmero 21,6 m.m. Teg. 21 belo itmis = 20,4 u=10,2 }=0,645 729 $\frac{3}{1} = 3.645$ $\frac{3}{4} = 0.357$ $\frac{a}{5} = 1.049$ I Valyfalis osék, atmero 28,0 u=13,5 726 3,68 \$ = 0,273 \ \frac{a}{3} = 1,039 TI Expripetta hills stares 32,5 721 3.655 $\frac{3}{n} = 0,299$ = 1,046 Glycerinhe Nazy thomsonder 230. glynem ha 141/5/358 N. T. 141 } 356 141 \358 142 (454 1415 (3576

```
Melhere wouldn's.
  · 2mming ofment 0,736
by who is peliers
 62° - 1,227 - 28,38 ) 0,220
118°7 - 4,618 - 15,64) 0,226
Sofryman of Sant seros &
         50 - 1,66 , almosphisa
         90 - 2,29 Regardy
                      6= $\frac{p}{a} \frac{2,56}{1+dL.770}
         80 - 3,98
         30 - 5,12.
         100 - 6,58
         110 - 8,05
         120 - 10,40
          120 - 12,71
          140-15,42
          150 - 18,64
          160 - 22,24
          170 - 26,80
          100 - 31,90
          190 - 36,90
                            mendelaff Dinning
                                               1. swing
Tespywlas Water.
                                      0,706
                       00 10000
                                              80° - 0,638
                       78°2 1,1508
                                    - 0,609
100 - 10152
                                              100° - 0,600
                                    - 0, boy
                       9908 1,2091
200 - 103/2
                                              1200 - 0,562
                       12102 13150 - 0,560
200 - 1,0487
                                              1600 - 0,512
400-10667
                       1570 14275 - 0,517
      + 0,00000000 0008ty
```

m, m, = Vm $\delta = \frac{\delta}{m_i} m_i$ 1 = mi end gjerhøjinge, En alludi er antigrig, Mudi a sporidis $X = \frac{3}{2} + 2 \qquad V = g + .$ e=212 v= 3212 = 23 ec x=ct+212 TUDOMÁRYOS AKADÉMA KONYVTÁRA

t	T	p (L).	Ptis Pt	DEp.	of.	
- 20	25-3	68.90				
-15	258	. 89, 31	20,41		4,08	
- 10	263	114,72	25,41	5,00	5,08	
-5-	268	146,06	31, 34	5,93	6, 27	
0	273	184, 39	38,33	6,99	7.66	
+ 5	278	230, 89	46,50	8,17	9,30	
10	283	286,83	55,94	9,44	11, 19	
15	288	353,62	66,79	19,85	13, 36	
20	293	432,78	79.16	12,37	15,83	
25	298	525, 93	93,15	13,99	18,63	
30	303	634,80	108,87	15-,72	21,77	
35	308	761,20	126,40	17,53	25, 28	
40	313	907,04	145,84	19,44	29,17	
45	318	1074,15	167,11	21,27	33,42	
50	323	1264,83	190,68	23,57	38,13	
55~	328	1487,06	216,23	25,55	13,24	
60	333	1725; 01	243,95	27,72	48,79	
6.5	338	1998,87	273,86	29,91	54,73	
Fo	343	2304,90	306,03	32,17	61,20	
75	348	2645,41	340,51	34,48	68,10	
80	35.3	3022,79	377,38	36,87	75,47	
85-	358	3439,53	416,74	39,36	83,35,	
90	363	3898,26	458,73	41,99	91,74	
95	368	4401,81	503,55	44,82	100,71	
100	373	4953,30	551,49	47,94	110,50	
105-	378	5556,23	602,93	51,44	120,58	
110	383	6214,63	658,40	55,47	131,70	
115-	389	6933,26	718,63	60,23	143,72	
120	393	7719, 20	785,94	67,31	157,19	
		Hethy	Math	er l	An O	

Anguster Wiken ether only esober cro' kilis almiroje = 15,2 belio alveje = 11,35 Singletis neggiber 210 210 195 Etherer abushaller twe 418 min waylow 418 418 min waylow 418 416 416 416 416,5 hb. 19. hay his tens · by edinghe felale, In engineral altabelles 2,0 langer = 125 }= 2,09 lug.21° u=5,67 }= 2,09 Teg 21° a hit syso Mar mismory & = 1,054 & = 1 1,250 & primules 418 418 \ 418 a hit signo vigero etgy Juralung 625 July 8271 Lay allerdo Tegr. br's 8 = 1,856 \frac{8}{4} = 0,327 Lywer autil = 1,042 272 J. 62 entr trois mulaloja or spokent Landold simple their mines 371 362,5 primatiles correctes. a = 1,934 27/ 362,5

Ohlocalis when formaling 288 { \$18,5 } 117,5 288 288 {218,5 , 117,5 290 290 { 218,5 1 117,5 288 288 (119 117,5 288 290 } 119 1 11\$15 Thereadin which terys. 26° 4/1 4/2,5 Gra Juralun 282 282 { 120 } - 119,5 282 282 { 120 1 280 680 (119 Try 1/87. 281 { 277 { 118 & = 1,422 worder withing etg 2/8/12/ 120 $\frac{3}{2} = 0,257$ $\frac{a'}{3'} = 1,042$ 120 282 276] 175 amothe a pinnellus myvelloges lyjus hung a twois mutulo lovelo leving 118,7 Moring 284,4 is my rallogis much alanh very is 10 ra 0,0006 at ametho ellentet is agin int bo slate. $\alpha = 1,490$

Evitras. Chlorialiam aldalla tere. Temperatura 230 439,5 440,5 440,5 Felherhalm og errets av angir felmin som by ign be hellels allistan.

26 376 y 120, 119,5 274 374 \$ 121, 120,5 377 377 (121) 120,5 275 376 } 120 1120,5 3745 379 1/18 1119 2745 275 119 3756 274 274 7/12/119 275 275 119 119 Elite Dengs, 22° 444 est had 449 hundin Upra frontun, 377 377 {120) 119 Kripehn t=119,6 3=1,877 276 377 318,5-1119 376 375 11915 119

there alcohol betine malua temp. Il,5 442,5 412,5 } 68. Inhe Lever lungs 21°5 t Mg 4, 12 1 -8,5 3642 41910 34 253,8 34 Ortufaylelas t= 21°5 {= 2,220 h = 7,3 = 0,304 South Mayon = 1,041 Am = 0,000 4 per to nis mutato ' n = 1,372 primatiles correctioned a = 2,302 t=67°6 = 2,071 u=7,3 = 0,284 winds dayjen = 1,040 prisma correctional a = 2,150 Toris mututo n = 1,353 Vives metalo n = 1,332

m= 2 x C2 dly O2 = 119,72 pris ma wordood a = 1,954

a = 1,954

A A A A A a t 113,91 4,847 23,49 65,42 0,20by 2,785 1,057 5,299 0,000 24,28 4,928 56,11 2,311 4,622 0,000 1,000 0,2083 5,034 25,34 45,28 0,002 1,787 127,62 0,938 Oprial 1,075 this in igs 3,594 KONYYTARA West - algyma li unday This in their a Wantilyn is olderer syrboging 6: \$\frac{p}{760} \frac{60}{1+dh} \frac{1}{770} \text{fundaves}\$ To Washlyn is Aclin is I'd wine 2/5map=20 68°mp=/32 120° na p= 781

ho 25787 995 255 86 254,96, 13 6 24,42 Into 255,68, 18,20 255,42 1 18,06 1608 256/05) 18,71 1871 454,06) 1702 198,26 161,35 18,59 18,23 her Jeali'har 25522 207,52 251,80
276,60 260,79

4

```
2n. kis zajenny ko
 Uresera:
 3247.7
  2569 - 247.85
                   525.38
  248.0-256.60
                  252.30
  256 3 - 24805
                   252.18
  2481
  248.8
                  252'30
  2557-2489
                 252.28
  522.4
                 i = + 0'5 amp. (effer ar am)
1 0=0
  212.0
  1917-21180
                 201.75
 211-6-191.90
                 20175
 1921 -21140
                 20175
 211.2
                 i = -0.5 amp (eggenaram)
    d=0
 305.8 - 502.83
                    568.55
 2959 - 20245
                    298:18
 302.3 -29395
                    298' 13
 294.0
  2. Q= 45°
 E= +0:5 amp.
                                           1 = -0 5 cmp.
 156.8
                                          3398
                                          3478 - 339.90
128.1 - 120.80
                157.45
                                                         343.85
156.8 - 158.15
                117.48
                                                           343.85
                                          247.6 - 240.00 / 343.80
128,5 -126.20
                157.50
                                          240.0
1568
  3. a=90°
   1 = + 0.5 cmp
                                          1 = -0 5 augs.
  167.7
                                          341.9
 181.9-167.80 174.85
                                          325.4-341.85
                                                         333.60
 167.9 181.60 174.75
                                          3418-32565
                                                          333.73
 1813-16805 174.68
                                         325.9- 541.48
 168.2
  4. d= 135
                               MARYAR
TUDOMÁR OF AKADEMA
EGNYYÍARA
    i= +0'5 aup.
                                          L: -0:5 ans
 139.8
                                          266.2
 2251 - 209.55
                  23233
                                                         27055
                                          280.6 - 266.50
 2393-22515
                 232.23
                                          266.8 - 280.40
                                                         273.60
 225.2 : 239.10
                202.15
                                          280.5 - 569.82
                                                         273.28
```

266.9

538.8

Wresers

232.9 271.1 - 203.35 252.28 233.8 - 270.65 252.23 270.2 - 234.30 252.25 274.8

5. Q=180°

1 = +0.5 amp.

285.1

312.2 - 285.55 298.98

286.6

286.6

6. a= 225°

1 = +0.5 amp.

332.5 320.1 - 332.55 341.33 332.5 332.5

7 a= 270°

i= +0:5 amp

337.8 328.9 - 337.35 332.95 327.4 - 328.60 332.95 337.8

8. N= 315°

L'= +0 's amp.

280.7 - 545.02 549.02 540.0 - 545.02 549.02 540.0 - 545.02 549.02

1. X=0

1 20.5 amp.

205.3 197.6 - 205.20 201.40 205.1 - 197.70 201.40 197.8 - 205.05 201.43 205.0 l' = -0.5 amp.

195.3 206.6 - 195.45 201.03 195.6 - 206.35 200.93 206.1 - 195.75 200.93

i = -0 5 amp

1688 1537 - 16850 166.10 1682 - 153.90 166.10 1541 - 16805 166.08

1 = -0 5 amp.

172.3 176.9 - 172.30 174.60 176.9 - 172.55 174.60 176.9 - 172.55 174.73

1 = -0'5 aup.

226.8 233.6 - 226.85 230.23 223.5 - 226.85 230.23 233.5 - 226.85 230.23 233.45 230.23

i= - 0.5 amp.

296.2-300.01 548.33 546.5-300.50 548.33 546.5-300.50 548.33

```
Uresen
 255.3
 249.0-255.25
                252.12
255.2 - 249.10 252.15
249.5 - 522.12 525.18
2551
                                        2. 9=45°
       1. X=0°
  1'= 0.5 ang.
                    valtatori aiam
                                          i'= O'Samp.
249.7 - 249.75
                                        287.)
                252.03
                                       217.2 -286.55
                                                        251.88
                525.08
56452 - 8-647
                                       2858-218.05
                                                        251.93
                 252.13
254.4 - 249.85
                                                        251.95
                                       2189- 28500
249.9
                                       184.7
   3 d= 90°
                                       4, 0=225°
                   vallaters aicu
  1=05 any.
                                        1'=0'5 cmp.
2281
                                        264.2
275.0 - 228.75
                 251.88
                                        240.0 - 564.00
                                                         252.00
229.4 - 274.15
               257:78
                                       2628-24000
                                                        252.05
273.3 - 230 00
                                       240.6 - 263.05
                                                         251.98
220.6
                                       262.9
8.962
266.9 = 237.00
                 251.95
207.2 - 266.50
                521.82
266.1 - 237.55
                 257.83
        Uresen
262.1
241.9 - 261.95
                 257.93
261.8 - 242.05
                 257.92
                  257.85
245-5 - 561.20
261.2
                                          6. a= 2250
     5 a=180°
                  · vallatoro ai an
                                          1 - 0 5 any
  1=05 amp.
                                         255.0
255.9
                                         249.2 - 254.95 252.08
548-4 - 522.80 525.10
                                         254.9 - 249.20
522.4 - 522.22 525.13
578.4 - 522.22 525.13
                                                           252.05
                                                           252.05
                                         254.9
    7. x= 270°
                                         8. a=315°
                                         257.1 - 247.05
                         TUDOMACK OF AKADEMA
249.9
                                                           252.08
254.6 - 249.95
                            KÖNYVTÁRA
                252.58
                                         247.2-257.00
                                                           252.10
250.0 - 254.45
                 252.53
                                         256.9 - 247.25
                                                            252.08
254.3 - 25000 252.15
                                         247.5
2500
```

248.1	
256.1 - 248.12 525.13	
548.5-52002 525.17	
256.0: 248.25 252.13	
548.7	
1. a=0°	2. Q = 45°
. u = 0	ACTION ACTION AND ACTION ACTIO
i= 4 pmp. valtabors airam	i's 4 anp. o
i= 4 brup. valbahors aram	
	2410
251.1	
244.9 = 257.00 247.95	2550-241.58 5481/3
	241.5 - 254.80 248.15
250.9 - 245.00 247.95	
245.1 - 250 85 247.98	254.6-541.60 . 548.10
250.8	2417
2 N = QD*	1, 0 - 1260
3. $x = 90$ i= 4 amp. vall alvis aram	4. d= 125° 1=4 amp.
t= 4 amp, vall arors aram	C= 4 amp
6363	259.3
242-1 - 528:17 521.65	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	250.5 - 526.50 524.30
	2591-250:30 254:30
2455 - 25783 251.67	250.4 - 259.00 254.70
257.7	528.8
Ureson	
the transfer of the second of	
202	
	· · · · · · · · · · · · · · · · · · ·
547.0 - 524.12 525.08	
257.2 247.0 - 257.15 252.08 257.1 - 247.15 252.08	
247:1 256 95 257:13	
cito- mi	
2473-25695 252.13	
2568	
256.8	
256.8	$6 \alpha = 225^{\circ}$
256.8 5 \ \alpha = 180°	6 a = 225°
256.8 5 \ \alpha = 180°	Approximation of the second se
256.8 5 \ \alpha = 180°	6. Q = 225° 1 = 4amp.
256.8 5. x = 180° 1'= 4 amp. valtalors' aram	l'a Yamp.
256.8 5. x = 180° 1 = 4 amp. valtabors' aran 260° 9	1'= 4amp. 2600
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.45	1 = 4 amp. 260.0 252.0 - 259.95 255.98
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40	1 = 4 amp. 260.0 252.0 - 259.95 255.98
256.8 5. x = 180° 1' = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.45 260 7 - 252.10 256.40	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38	1 = 4amp. 260.0 252.0 - 259.95 255.93 252.0 - 259.85 255.93 252.0 - 259.85 255.93
256.8 5. x = 180° 1' = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.45 260 7 - 252.10 256.40	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6	260.0 252.0 - 259.85 255.93 259.9 - 252.00 255.95 259.8 255.95
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6	1 = 4amp. 260.0 252.0 - 259.95 255.93 252.0 - 259.85 255.93 252.0 - 259.85 255.93
$5. \alpha = 180^{\circ}$ $i = 4 \text{ amp.}$ valtabors' airan 260.9 $252.1 - 260.80$ 256.45 $260.7 - 252.10$ 256.40 $252.1 - 260.65$ 256.38 260.6 $7. \alpha = 270^{\circ}$	1 = 4amp. 260.0 252.0 - 259.95 255.95 252.0 - 259.85 255.95 259.8 8. \(\alpha = 315^{\infty}\)
$5. \alpha = 180^{\circ}$ $i = 4 \text{ amp.}$ valtabors' airan 260.9 $252.1 - 260.80$ 256.45 $260.7 - 252.10$ 256.40 $252.1 - 260.65$ 256.38 260.6 $7. \alpha = 270^{\circ}$	1 = 4amp. 260.0 252.0 - 259.95 255.95 252.0 - 259.85 255.95 259.8 8. \(\alpha = 315^{\infty}\)
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6	260.0 252.0 - 259.85 255.93 259.9 - 252.00 255.95 259.8 255.95
256.8 1 = 4 amp. valtabors' aram 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6 7 = \times = 270° 1 = 4 amp. valtabors' aram	1 = 4 amp. 260.0 252.0 - 259.95 255.95 252.0 - 259.85 255.95 259.8 8. \(\alpha = 315^{\circ} \)
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6 7. \(\pi = 270^{\circ}\) 1 = 4 amp. valtabors' airan 259.2	1 = 4 amp. 260.0 252.0 - 259.95 255.95 252.0 - 259.85 255.95 259.8 8. &= 315° L = 4 amp.
256.8 $5. \alpha = 180^{\circ}$ $i = 4 \text{ amp.}$ valtabors' airan 260 g $252.1 - 260.80$ 256.45 $260.7 - 252.10$ 256.40 $252.1 - 260.65$ 256.38 260.6 $7. \alpha = 270^{\circ}$ $i = 4 \text{ amp.}$ valtabors' airan 259.9 $246.0 - 259.10$ 252.55	1 = 4 amp. 260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 259.8 8. \q = 315 L = 4 amp. 246.0 252.8 - 246.0 249.40
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6 7. \(\pi = 270^{\circ}\) 1 = 4 amp. valtabors' airan 259.2	1 = 4 amp. 260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 259.8 8. \q = 315 L = 4 amp. 246.0 252.8 - 246.0 249.40
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.40 252.1 - 260.65 256.38 260.6 7. \(\alpha = 270^{\circ}\) 1 = 4 amp. valtabors' airan 259.9 246.0 - 259.10 252.55 259.0 246.00 252.50	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 252.0 - 259.85 255.95 259.8 8. &= 315° 246.0 246.0 249.0 249.40 246.0 252.75 249.40
256.8 1 = 4 amp. valtalors' aram 260.9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6 7	1 = 4 amp. 260.0 250.0 - 259.95 255.98 259.9 - 252.00 255.95 259.8 246.0 - 252.75 249.40 246.0 252.8 - 246.0 249.40 252.7 - 246.05 249.40 252.7 - 246.05 249.38
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airan 260 9 252.1 - 260.80 256.40 252.1 - 260.65 256.38 260.6 7. \(\alpha = 270^{\circ}\) 1 = 4 amp. valtabors' airan 259.9 246.0 - 259.10 252.55 259.0 246.00 252.50	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 252.0 - 259.85 255.95 259.8 8. &= 315° 246.0 246.0 249.0 249.40 246.0 252.75 249.40
256.8 5. \alpha = 180° 1 = 4 amp. valtabors' airam 260°9 252·1 - 260·80 256·45 260·7 - 257·10 256·40 252·1 - 260·65 256·38 260·6 7. \alpha = 270° 1 = 4 amp. valtabors' airam 259·9 246·0 - 259·10 252·55 259·0 246·00 252·50 246·0 - 258·90 252·45 258·8	1 = 4 amp. 260.0 250.0 - 259.95 255.98 259.9 - 252.00 255.95 259.8 246.0 - 252.75 249.40 246.0 252.8 - 246.0 249.40 252.7 - 246.05 249.40 252.7 - 246.05 249.38
256.8 5. \alpha = 180° 1 = 4 amp. valtabors' airam 260°9 252·1 - 260·80 256·45 260·7 - 257·10 256·40 252·1 - 260·65 256·38 260·6 7. \alpha = 270° 1 = 4 amp. valtabors' airam 259·9 246·0 - 259·10 252·55 259·0 246·00 252·50 246·0 - 258·90 252·45 258·8	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 252.0 - 259.85 255.95 259.8 8. \alpha = 315 246.0 252.8 - 246.0 249.40 246.0 - 252.75 249.38 252.7 - 246.05 249.38 256.1
256.8 1 = 4 amp. valtalors' airam 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6 7	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 252.0 - 259.85 255.95 259.8 8. \alpha = 315° 246.0 252.8 - 246.0 249.40 246.0 - 252.75 249.38 252.7 - 246.05 249.38 246.1 Uresen
256.8 1 = 4 amp. valtalors' airan 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6 7	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 252.0 - 259.85 255.95 259.8 8. \alpha = 315 246.0 252.8 - 246.0 249.40 246.0 - 252.75 249.38 252.7 - 246.05 249.38 256.1
256.8 1 = 4 amp. valtalors' airan 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6 7	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 252.0 - 259.85 255.95 259.8 8. \alpha = 315° 2= 4 cmp. 246.0 252.8 - 246.0 249.40 246.0 - 252.75 249.38 252.7 - 246.05 249.38 252.7 - 246.05 249.38 246.1
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airam 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6 7 \(\pi = 270^{\circ}\) 1 = 4 amp. valtabors' airam 259.9 \(246.0 - 259.10 \) 252.55 259.0 \(246.00 \) 252.50 246.0 - 258.90 \(252.50 \) 246.0 - 258.90 \(252.45 \) 258.8 1. \(\pi = 0^{\circ}\) 1 = 4 amp. valtabors airam 242.1 253.8 - 242.40 248.10	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 252.0 - 259.85 255.95 259.8 8. &= 315 2= 4 cmp. 246.0 252.8 - 246.0 249.40 246.0 - 252.75 249.38 252.7 - 246.05 249.38 246.1 Uresen 257.4 247.3 - 257.30 252.30
256.8 5. \alpha = 180° 1 = 4 amp. valtabors' airam 260 9 252.1 - 260.80 256.40 250.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6 7 \alpha = 270° 1 = 4 amp. valtabors' airam 259.9 246.0 - 259.10 252.55 259.0 - 246.00 252.55 258.8 1. \alpha = 0° 242.1 253.8 - 242.40 248.10 242.7 - 253.55 248.13	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 252.0 - 259.85 255.93 259.8 8. $\alpha = 315$ i = 4 cmp. 246.0 252.8 - 246.0 249.40 246.0 - 252.75 249.38 252.7 - 246.05 249.38 246.1 Uresen 257.4 247.3 - 257.30 252.30 257.2 - 247.45 252.33
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' airam 260 9 252.1 - 260.80 256.45 260.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6 7 \(\pi = 270^{\circ}\) 1 = 4 amp. valtabors' airam 259.9 \(246.0 - 259.10 \) 252.55 259.0 \(246.00 \) 252.50 246.0 - 258.90 \(252.50 \) 246.0 - 258.90 \(252.45 \) 258.8 1. \(\pi = 0^{\circ}\) 1 = 4 amp. valtabors airam 242.1 253.8 - 242.40 248.10	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 252.0 - 259.85 255.93 259.8 8. $\alpha = 315$ i = 4 cmp. 246.0 252.8 - 246.0 249.40 246.0 - 252.75 249.38 252.7 - 246.05 249.38 246.1 Uresen 257.4 247.3 - 257.30 252.30 257.2 - 247.45 252.33
256.8 5. \(\alpha = 180^{\circ}\) 1 = 4 amp. valtabors' aram 260 \(\gamma \) 250 \(\gamma = 250 \) 252.1 - 260.80 \(256.40 \) 252.1 - 260.65 \(256.38 \) 260.6 7. \(\alpha = 270^{\circ}\) 1 = 4 amp. valtabors' aram 259.0 \(246.0 - 259.10 \) 259.0 \(246.00 \) 259.8 1. \(\alpha = 0^{\circ}\) 246.0 - 258.90 \(252.50 \) 246.0 - 258.90 \(252.45 \) 258.8 1. \(\alpha = 0^{\circ}\) 242.1 253.8 - 242.40 \(248.10 \) 242.7 - 253.55 \(248.13 \) 253.3 \(242.70 \) 248.01	260.0 252.0 - 259.95 255.98 259.9 - 257.00 255.95 259.8 8. \q = 315 246.0 252.8 - 246.0 249.40 246.0 - 252.75 249.38 252.7 - 246.05 249.38 252.7 - 246.05 249.38 246.1 Uresen 257.4 247.3 - 257.30 252.30 257.2 - 247.6 - 257.15 252.33 247.6 - 257.15 252.33
256.8 5. \alpha = 180° 1 = 4 amp. valtabors' airam 260 9 252.1 - 260.80 256.40 250.7 - 252.10 256.40 252.1 - 260.65 256.38 260.6 7 \alpha = 270° 1 = 4 amp. valtabors' airam 259.9 246.0 - 259.10 252.55 259.0 - 246.00 252.55 258.8 1. \alpha = 0° 242.1 253.8 - 242.40 248.10 242.7 - 253.55 248.13	260.0 252.0 - 259.95 255.98 259.9 - 252.00 255.95 252.0 - 259.85 255.93 259.8 8. $\alpha = 315$ i = 4 cmp. 246.0 252.8 - 246.0 249.40 246.0 - 252.75 249.38 252.7 - 246.05 249.38 246.1 Uresen 257.4 247.3 - 257.30 252.30 257.2 - 247.45 252.33

les 5098 /34

Meniscus 1884-til

> MAGYAR LUDOMATYOS AKADEMRA KONYVYÁRA

Formula grande II The cet of is taked leving bele 1) experteble where, 1884 ming belief : $z^{2} = 2a^{2} \sin^{2} \frac{1}{2} + \frac{4}{3u\sqrt{2}} \left(1 + c\frac{a}{u}\right)^{2} \left(1 - co^{2} \frac{1}{u}\right) - \frac{2a^{2}}{\sqrt{2}u} \left(1 + c\frac{a}{u}\right)^{2} \left(1 - co^{2} \frac{1}{u}\right) + \frac{2a^{2}}{\sqrt{2}u} \left(1 + c\frac{a}{u}\right)^{2} \left(1 - co^{2} \frac{1}{u}\right) + \frac{2a^{2}}{\sqrt{2}u} \left(1 + c\frac{a}{u}\right)^{2} \left(1 - co^{2} \frac{1}{u}\right) + \frac{2a^{2}}{\sqrt{2}u} \left(1 + c\frac{a}{u}\right)^{2} \left(1 - co^{2} \frac{1}{u}\right) + \frac{2a^{2}}{\sqrt{2}u} \left(1 + c\frac{a}{u}\right)^{2} \left(1 - co^{2} \frac{1}{u}\right) + \frac{2a^{2}}{\sqrt{2}u} \left(1 + c\frac{a}{u}\right)^{2} \left(1 - co^{2} \frac{1}{u}\right) + \frac{2a^{2}}{\sqrt{2}u} \left(1 + c\frac{a}{u}\right)^{2} \left(1 - co^{2} \frac{1}{u}\right) + \frac{2a^{2}}{\sqrt{2}u} \left(1 + c\frac{a}{u}\right)^{2} \left(1 - co^{2} \frac{1}{u}\right) + \frac{2a^{2}}{\sqrt{2}u} \left(1 + c\frac{a}{u}\right)^{2} \left(1 - co^{2} \frac{1}{u}\right) + \frac{2a^{2}}{\sqrt{2}u} \left(1 + c\frac{a}{u}\right)^{2} \left(1 +$ 2 = 2 at 2 1 2 1 2 1 4 a 3 uv2 (+ c a) 2 - co 2 1 2 a 3 (+ c a) 1 - co 2 } ha Mis auch at a noch hetto nit organales helvegat ellegs 2 = 24 2in 2 + 443 (1-40) 2) + 443 0 4 co 2 sin 2 Kimil: $Z^{2} = 2a^{2} cin^{2} \frac{\lambda}{\epsilon} - \frac{4a^{2}}{3uV_{2}} (1-c\frac{a}{u})(1-co^{2}\frac{\lambda}{\epsilon}) + \frac{2a^{2}}{v_{E}u}(1-c\frac{a}{u})(1-co^{2}\frac{\lambda}{\epsilon}) - \frac{2a^{3}}{v_{E}u}(1-c\frac{a}{u})(1-co^{2}\frac{\lambda}{\epsilon})$ upåil at a neh hello'nit magus abb hatvaguis elkegagolva 2= 242in 2 - 44? (1-40 2) + 44? c 4 con 2 in 2 d $Z = \sqrt{2} a \lim_{z \to 0} \left\{ 1 + \frac{a}{3\sqrt{2}n} \frac{1 - as^{\frac{2}{2}}}{2in^{\frac{2}{2}}} + \frac{c}{\sqrt{2}} \frac{a^{\frac{2}{2}}}{h^{2}} as^{\frac{2}{2}} - \frac{1}{2} \frac{1}{18} \frac{a^{\frac{2}{2}}}{u^{2}} \left(\frac{1 - 4s^{\frac{2}{2}}}{2in^{\frac{2}{2}}} \right)^{\frac{2}{2}} \right\}$ Z=Via din i { 1-a 1-con'i + C a 2 con i - i 18 in 2 (1-con'i) } ein 2 = Vi on E + i im E - her & = #+ E hims $z = a \left(\omega_1 \frac{\epsilon}{2} - \omega_1 \frac{\epsilon}{2} \right) \left\{ 1 - \frac{a}{n} c + \frac{a}{n} \frac{2\epsilon}{2} + \frac{1}{2} \frac{4\epsilon}{n} \right\}$ 2'-2=qcon = 2 4 c + \$ c + \$ c + \$ b= Tota

2 poritis. belis: Formula a gjærðire 2.

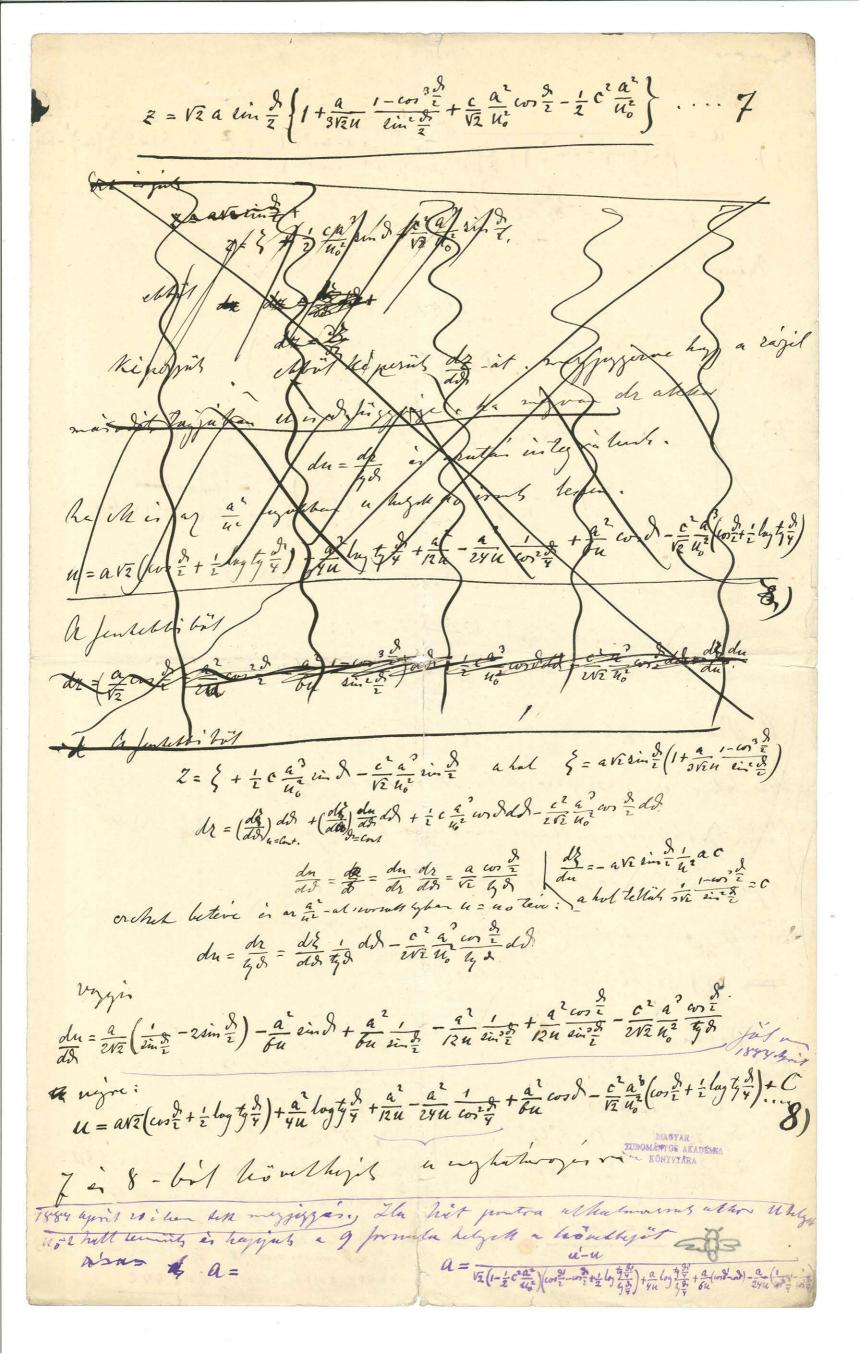
2 m k 2 - 2 2 /2 du + 2 uf (1-wod) - 2 f (ds-du) = 0 1884 mirer 2 Kinil

Kin + Kg2 du - zuf(1-wod) + 2f (dr-du) 2 regulis. $-Nz^{2}u - \kappa \int_{z}^{2}dn + mf\cos\vartheta - mf - vffdr - dn) = 0$ Krn- K/2°dn + ruf (1-col) - 2f (dr-dn) =0 ** - K2"u - K J2"da + 2 fl - 2 fucos d - 2 fl + 2 fn + 2 flds - dn K22n+K S22dn -rnf(1-cos d) + 2f (ds-dn) = 0 Flynnh a hai porihv ahai nyatir. $z^{2} - \frac{1}{n} \int z^{2} du - a^{2} (1 - \cos \theta) - \frac{a^{2}}{n} \int (ds - du) = 0$ belistre : $z^{2} + \frac{1}{u} \int_{-\infty}^{2u} du - a^{2}(1-con x) + \frac{a^{2}}{u} (ds - du) = 0$ Rivilre behit: $z = 2a^{2} \sin^{2} \frac{d}{z} + \frac{1}{n} \left[z^{2} dn + \frac{a^{2}}{n} (ds - dn) \right] = 0$ kiril: $z^{2} = 2a^{2} \sin^{2} \frac{d}{z} - \frac{1}{n} \left[z^{2} dn - \frac{a^{2}}{n} (ds - dn) \right] = 0$ ha tensink $z = \sqrt{2}a \sin \frac{1}{z}$ akkor. $\int z^2 du = -\frac{2a^3}{\sqrt{2}}(1-\cos \frac{1}{z}) + \frac{4a^3}{3\sqrt{2}}(1-\cos \frac{1}{z})$ (ds-du) = $\frac{24c}{\sqrt{2}}(1-\cos \frac{1}{z})$ belief $z^2 = 2a^2 \sin^2 \frac{x}{2} + \frac{4a^3}{4a^3} \left(1 - \omega^2 \frac{x}{2}\right)$ Kirist $z^2 = 2a^2 \sin^2 \frac{x}{2} - \frac{4a^2}{4a^3} \left(1 - \omega^2 \frac{x}{2}\right)$ elso 2 belief: $Z = \pm \sqrt{2} \alpha \sin \frac{3}{2} \left(1 + c \frac{\alpha}{n} \right)$ a hat $z = \pm \sqrt{2} \alpha \sin \frac{3}{2} \left(1 - c \frac{\alpha}{n} \right)$ $z = \pm \sqrt{2} \alpha \sin \frac{3}{2} \left(1 - c \frac{\alpha}{n} \right)$ $z = \pm \sqrt{2} \alpha \sin \frac{3}{2} \left(1 - c \frac{\alpha}{n} \right)$ $z = \pm \sqrt{2} \alpha \sin \frac{3}{2} \left(1 - c \frac{\alpha}{n} \right)$

Formulah levejelere a forgan jeli tethy. Wom enther ha a teløjendba a forhis leloge so net plantheto. That - is a I hay time to get ben it eggs is that visites is hot xy ich . by himitack fogule had egging a esther a new mitadieras of X ways in ateris in reging 0 - nuch hell benni. Er arlie : ha a I-ly forgon syrre = 4 $uz^{2} - \int z^{2}du - a^{2}u(1-\cos \delta) - a^{2}\int (ds - du) = 0$ $z^{2}=2ci^{2}im^{2}\frac{8}{c}+\frac{1}{n}\int_{0}^{2}du+\frac{a}{n}\int_{0}^{\infty}(ds-du)$ 2) ha n= w Akkar: Z'= za'im's $Z = a\sqrt{2} \sin \frac{Q}{L} \cdots$ 3) Johnsmilained mind ds = dx dn = dx $dx = \frac{a}{v_1} \cos \frac{\lambda}{2} d\lambda$ $dx = \frac{a}{v_1} \cos \frac{\lambda}{2} d\lambda$ is in do - de = de 2 in 2 ? $z^2 = 2a^2 \lim_{x \to \infty} \frac{1}{x} + \frac{1}{u} \int_{-\frac{1}{u}}^{\frac{u}{u}} \frac{1}{u} \int_{-\frac{1}{u}}^{\frac{u}{u}$ is when . $Z = 2a^{2} \lim_{L} dx + \frac{a^{3}}{uv_{1}} \int_{uv_{1}} uv_{2} \int_{uv_{2}} uv_{1} dx + \frac{a^{3}}{uv_{2}} \int_{uv_{2}} uv_{2} dx$ $2^{2} = 2a^{2}\sin^{2}\frac{\lambda}{2} + a^{3}\sqrt{2}\int_{0}^{\infty}\sin\frac{\lambda}{2} - a^{2}\sqrt{2}\int_{0}^{\infty}\sin^{2}\frac{\lambda}{2}d\lambda$ $\lim_{N \to \infty} \frac{\lambda}{2} = 2\sin^{2}\frac{\lambda}{2} + a^{3}\sqrt{2}\int_{0}^{\infty}\sin\frac{\lambda}{2}d\lambda$ $\lim_{N \to \infty} \frac{\lambda}{2} = 2\sin^{2}\frac{\lambda}{2} + a^{3}\sqrt{2}\int_{0}^{\infty}\sin\frac{\lambda}{2}d\lambda$ $\int dx \sin^2 x = -\frac{\sin^2 x \cos x}{3} + \frac{2}{3} \int dx \sin x$ $z = 2a^{2} \sin^{2} \frac{1}{2} + \frac{y}{3} \frac{a^{2}}{uv_{2}} (1 - \cos^{2} \frac{1}{2}) = 2a^{2} \sin^{2} \frac{1}{2} \left(1 + \frac{2a}{3uv_{2}} \frac{1 - \cos^{2} \frac{1}{2}}{2in^{2} \frac{1}{2}}\right)$ obbit pedig VI+x = 1+ x formula raint En a formula any han his los bois a rejectlist by time it is never to

Ha most mygond algik hay $\frac{1}{3\sqrt{2}}\frac{1-\omega r^{2}}{\sin^{2}\frac{r^{2}}{2}}$ istele som naggo vide

with - by Mislowine &= 0 ra = 0,352 &= \frac{1}{2} nc = 0,303 lekelis


\[
\frac{1}{3\sqrt{2}}\frac{1-\sqrt{2}}{\sin^{2}\frac{r^{2}}{2}} = c = \frac{1}{3} \] a milhor is ca valid is it leftely the total

\[
\frac{1}{3\sqrt{2}}\frac{1-\sqrt{2}}{\sqrt{2}\sqrt{2}} = c = \frac{1}{3} \]

\[
\frac{1}{2\sqrt{2}}\frac{1-\sqrt{2}}{2\sqrt{2}} = c = \frac{1} te et - et a Correction types mos erale hiering befolgern og gigik a 3-ril naggobb y 5-ril lærett Köpliternel End of it het felhasemil but for any a my yearles ? itales' tægihe ? is de istihut begyne megints og af 5) mil portor abb Køjelitert. Iln 6 han u=uo estilut levis, a hol uo horignette er like a felislet agne riseine niver meget sible joines $z = avi in \frac{\lambda}{i} \left(1 + \frac{a}{a_0}\right) = avi in \frac{\lambda}{i} \left(1 + \frac{ca}{a_0}\right)$ $dr = \frac{a}{\sqrt{2}} \cos \frac{x}{2} \left(1 + \frac{a}{2u_0} \right) = \frac{a}{v_1} \cos \frac{x}{2} \left(1 + c \frac{a}{u_0} \right)$ Körlibby $Z^2 = 2a^2 \left(1 + 2c \frac{a}{n_0}\right) \sin^2 \frac{d}{c}$ Mayuyathatus yn tugos ugeller (a) ikm van 2 = 2 a 2 in 2 + 4 a 2 (1-cm 2) + 4 c a 4 cm 2 in 2 2

vry og a Lolio han Leve 4 = 40 $z^{2} = 2a^{2} \sin^{2} \frac{\delta}{2} \left\{ 1 + \frac{2a}{3\sqrt{2}u} \frac{1 - \cos^{3} \frac{\delta}{2}}{2in^{2} \frac{\delta}{2}} + \sqrt{2.0} \frac{a^{2}}{u_{0}^{2}} \cos^{3} \frac{\delta}{2} \right\}$ oblit gyi kat vonnet time $x = \frac{2a}{2VER} \frac{1-\cos^2\frac{a}{2}}{2in^2\frac{a}{2}} + V_{\Sigma} C \frac{a^2}{\mu_0} \cos \frac{a}{2}$ in a kelle reversation x^2 -ban a min with tray negly peter el henry galand lost: VI+X = 1 + x - 1 x 2 seruh $Z = V_{2} a e in \frac{9}{2} \left\{ 1 + \frac{a}{3V_{2}u} \frac{1 - cos^{2} \frac{3}{2}}{e in^{2} \frac{3}{2}} + \frac{c}{V_{2}} \frac{a^{2}}{u_{o}^{2}} ers \frac{3}{2} - \frac{11}{218} \frac{a^{2}}{u^{2}} \left(\frac{1 - cos^{2} \frac{3}{2}}{2in^{2} \frac{3}{2}} \right) \right\}$ tine of a -al 12mm to try ban a helyelk us is

\[\frac{1}{18} \left(\frac{1-\cos^2 \frac{1}{2}}{2\cdots^2 \frac{1}{2}}\right)^2 = C^2 = \frac{1}{q} \left \left(\frac{1}{2\cdots^2 \frac{1}{2}}\right)^2 = C^2 = \frac{1}{q} \left(\frac{1}{2\cdots^2 \frac{1}{2\cdots^2 \frac{1}{2}}\right)^2 = C^2 = \frac{1}

 $Q) = \frac{2'-2}{\sqrt{2}(\sin\frac{3}{2}' - 2\sin\frac{3}{2}) + \frac{a}{3}\{\frac{1}{u'}\frac{1 - \cos^{3}\frac{3}{2}'}{ein^{3}} - \frac{1}{u}\frac{1 - \cos^{3}\frac{3}{2}}{ein^{3}}\} + \frac{c}{2}\frac{a^{2}}{h_{0}^{2}}(\sin\frac{3}{2} - \sin\frac{3}{2}) - \frac{c^{2}a^{2}}{\sqrt{2}}(2\sin\frac{3}{2} - \sin\frac{3}{2})}{a \text{ Let } = \frac{c}{3}}$ $a = \frac{u'-u}{P+aQ+a^2R} \qquad ahul$ $P = \sqrt{2}\left(\cos\frac{\vartheta'}{z}-\cos\frac{\vartheta}{z}+\frac{1}{z}\log\frac{t_y}{\frac{\vartheta}{z}}\right)$ $Q = \frac{1}{4n!} l_{ny} t_{y}^{\frac{1}{4}} - \frac{1}{4n} l_{ny} t_{y}^{\frac{1}{4}} - \frac{1}{12} \frac{u'-n}{nn'} - \frac{1}{24} \left(\frac{1}{n'} \frac{1}{as^{\frac{1}{4}}} \right) + \frac{1}{6} \left(\frac{cos \delta'}{n'} - \frac{cos \delta}{n} \right)$ $R = -\frac{c^{2}}{r_{\overline{2}}} \frac{(cos \frac{1}{2} - cos \frac{1}{2} + \frac{1}{2} l_{ny} \frac{t_{y}}{t_{y}^{\frac{1}{4}}} \right)$ $l_{ny} x = 2,3025.85 log valy x$ E ket utobbi formulå uh a ude af elméletnik igusslisier Iskaluch a høvethyr his is letely: Illiselet. A Plateau - file edayber 15 (18 vig) himser = Fajordya = 1,075 Me beteve egg neggnigtetes décriber en egggi - her higny (lå). Og dek brocapillari inteliebt (hype is leges) foretet) å gyn ni atmiro'ji 20 m.m. Endelne a nigging liter - in a pyr'ni edig han a hyry meneran Louis 68 intelistist Ricip 68 inte Riejo by in Meles but 22-2,=2,0275 22-2,=1,88625 Da=75°52' S,=6°47' De=72°362' 8,=5°27' 4 = valin 2 sing, heyeld wind Quova 2,580 $Q = \frac{2'-2}{\sqrt{2}\left(2im\frac{3}{2}\right)^2 - \frac{3}{2}}$ hiplettil a = 2,449

gyvin formela II E his is letter a hit adat etterese nistegy 0,28 Spigales. Ennel mig teljesebb meggyfres? vertem. Ay etteres omit lehet, hogy a Ligney a gjuri ben ædio inkra nerve højel voll og edreg rick-Reg, hal is Jesenthey allhaballed. Ewil tavolable van af zing suletal age hiscileteland melyelben ag a eitele heicht. Mushre isnehelse lett a heidet. ly chatro capilloris (qqu'i degra phisi belektoit hi vetem arm istilulat meget a) Elektromer ers' = & - 0,42195 Vola wouthoftely. Ene voultojot. Dina 6) Indelines Juin 20 inheitit 2,-2,=1,7456 20 inteléstis) 22-2,=1,6782 mudy ar whis 4 vintetets. an a dove citéhe. a dura = 2,2853 | a dura reupo'
uraba $\alpha = 2,1793$ De wroter a og hiplether a reversiber lenis a=2,1792 és a=14,5 n=10 Ung: columbiand))

20,00479 What maky a reversions : % es cil 41 (sin 2 - Lin 3) = 0,00146 es arlin å hit iste h hö jött ag elteres melyg too stagelik I kisishel sor. KONYVIARA Tel lett illiture og gyririhen fetin tilt higgy neminus. By Lejnley intelse a kathethometerrel en og orstalgoris gegyel. a merisel upg totentels, hogy dill as orthegoro's geget I atak a Kathelhometerd ? meres es diojetetets. It en hat hajlin i ogleter a his vellegist valtes.

a Kithelhometer reli en leleve 8, = 6°24' | 2 = 36°50' | 23=69°572' as or tuly oro grand enteleme J, = 12° 33' | d2 = 24° 45 = 1 | J3 = 55° 20 = Much hopy 40 is seles bit wiltogo mul hires a 2,-2, in 2,-2, -vel menis en myeretelt: egyi dy 20 inklestor nz-u, = 1,0699 22-2, = 0,8592 no-uz = 1,0476 25-72=0,8415 e unch the girech were altal agretety nzos = 21,5 je de 15 kylem Uson = 22,5 10 Kip letter tetetet elgend höreliteres a = 1/4 by 4 / - 1/4 ((1/4 - 1/4) + fu (con 8' - con 8) helphan = 45,5 E spand u,=19,8 42=22,4 u2=23,1 R = 0 er eitéliele a Cybriles felis let forme Lyy Zulaltalots lajabut bøntlertel. Lyy ngeretets 40 - 42 his nz-4, had 22-2, hil 23-22 bit 1 00 hord = 2,3229 12 Kirlites = 2,3352 120 hojstice 2,3/3/ his highlite's 2,3358 2il " . 2,2542 22 - = 2,2454 24 2,2500 21 . 2,2455 3 % " 2,2572 2X - = 2,2479 34 " " 2,2530 3 % " 2,2474 Whit lehut letat tehit A23 = 2,248 an= 2,257 $a_{12} = 2,253$ $a_{23} = 2,247$ Violejs éstil a hét

Rouje èstil a hét $A_{her} = 2,250$ $A_{her} = 2,250$ e helestol A Körigistel a med regg istelie bis = 2,251 ettist tyinlabs dte 2,257 er judig 0,26 Spipslikhal. A megeggeges Air litimes tehentor, hazy af indeleich nen eggilgied er veltogo felilete, to tel till much degrees.

/20

24

20

Megvingaltatalt a falebbi moder nig gy gyvin (ag döblind neggotb) å haj lår rivgletet voltet: Kath Umale is plelis mil 8, = 6° 24' dz = 36° 50' dz = by° 57'z' britaggogejs intelés al. 8. = 12°33' de 24°45 i' do = 55°20 i' 10 èvelés vil 20 en Melio bol $u_2 - u_1 = 1,0626$ $u_{201} = 49,5$ $u_3 - u_2 = 1,0424$ $u_{301} = 50,5$ 22-2,=0,856 20-22= 0,8425 condy a 10 hipelettist a en Ray ins ter 4,=48 4,n= 49,7 42 = 50,6 etil : uros = 51,2 43 = 57,3 by All in north of formulator 113-42-bis 2, - 2, 101 22-2, but 42 - U, bis 12. Kö jenter 2,3324 120 kirel = 2,3149 120 Kigelit : 2,3192 120 king 2,3103 22 " 2,2897 24 1 = 2,2812 2 % . 2,283 2 is hin 2,2754 24 . 2,2904 3 24 .. 2,284 22 1,2,2767 24 " 2,2817 lelat Lhat. 2,277 A23 = 2,284 2,282 a12 = 2,290 What hough Estis Troup cites whit Aus = 2,280 al = 2,287 A horizo istel a mud a 4 ishalal a = 2,284 a this a lega, 8700 Mteris 2,277 vaggis of Me 1,3 Sjagaletilest. agis 10 bit lengtett formelit. I huges fetislete u = 00 when: $a = \frac{z'-2}{Vi(\sin\frac{x}{2}'-\sin\frac{x}{2})}$ $a = \frac{u'-u}{\sqrt{2}\left(\omega r_{\overline{L}}^{S'} - \omega r_{\overline{L}}^{S'} + \frac{i}{L}\log\frac{h_{\overline{L}}}{\sqrt{2}}\right)}$

A bubund majoring & # sig Sawing. igo to adju: a butvils vary energy majorings I: to helig hiadoris & formulation -Abal arton. $a = \frac{Z_{go}}{1 + 0,3047 \frac{a}{u} + \frac{1}{9} \frac{a^2}{u^2}}$ Zynsalos Troel a formlåval sjämstor a vis buboriletra telilt legneggobt å tie helet, a hisebbel having le hettel, a Tinjlallung fogten : Endelind. 27 Zgo i millandely Stomanis 3thm 829 a 13 formulabillion when's vo. 38 mm | 821,9 = 4,1095 m.m. 210 as en pontos endeleses but telibes a in me nerve a = 3,841 lehat as elter, crusinos papales Min all igarulus : Animake dalger atalan Mer Capillaritat. consher unger an des gameinsamen Obefl. I. Flungshleiter Pogg. 1870 (139 Kitch) a 14 ih aldalon " Flache Luft Haren in abs. Alcohal 3-8 2 jam aluk adja K-k=2go istelust alkaholna 25° núl ag egen isteluktór vont köreje.

istel = 2,5703, a 12 formula 25° núl adji 2,424 estelesein segégint
his connectivist tene sobbet bleakela. 20 fokrál 2,423 gelteris z hajalis

Vajit golgó is Mekiembir bleakel 20 fokrál 2,407 gelteris z hajalis Unicke no hischelitat 20 Johns 2,379 On he his is leter ben = = (76) = 3,557, more it she 71 formulabres 7,50 3,583 a Ritto horist og etters descht mint a lunche en blese, ben fettis no hiba of en Muja; soight behat ign in leketett-0 men predig ump Bunde alwije 35'12' his 15hz.

M 5098 /35 Con(0+2) (1-0) dv (by + 242) att. cos(d+8) (0-6) dv Dy a + cos(d+8) 8 (0-0) du 04 Con 8 + E m 8 Calleyin fell TAASYAR WIDOMÁNYOS AKADÉMI KÖNXYTÁRA

le rivemplith medais her og la li ogis og he for V= U+ trw2 Fa ha a 2 tegré a forgio engli en V= U+ = (x2+y2)w2 $\frac{\partial V}{\partial x} = \frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} = \frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial y}$ 2 = 24 + w= AV= A4 + 2w2 Jegjih az earto cikha. al x y nyezh m. 20x + 3x0 5x 20 5 = - 8 = - 8

each mint $\Delta V = -3\left(\frac{1}{5} + \frac{1}{5}\right) + \frac{3^{2}V}{3^{2}} = 2\omega^{2}$ $\frac{3^{2}V}{3^{2}} = -\frac{9}{5}$ $\frac{3^{2}V}{3^{2}} = -\frac{9}{5}$ $\frac{3^{2}V}{3^{2}} = -\frac{9}{5}$ $\frac{3^{2}V}{3^{2}} = -\frac{9}{5}$

 $\frac{\partial^{2}V}{\partial z^{2}} = \frac{\partial^{2}z}{\partial z} = \frac{\partial^{2}(z^{2} + z^{2})}{\partial z^{2}} + 2w^{2} \qquad \omega = \frac{2\pi}{86064} \qquad \omega^{2} = \frac{0,0000000}{005318}$

Thieren 11 m 48 myann 2 mgs. 840 ± 0,015 0 0 2474.

Pani. 2474.

menik ik a kyrk
X P. a jiche clenin homm dis

hyhir a inhy dr

Deni (2+9)2 = 12+92 229=12 2= 2 == 5, co & + 5 cm & S 2 = = ((in is) + in is) dr = y = di (= 2 cond in 8 ad + iz in I con I ach) da = 1 = 12 in 28 de (1 - 1) do = i him ld=1 2 = 1 mind (5 - 5) Lizt abler a proje mem ngets mgdin 201(- 5.) Angris mehm = mgl (; - pz) in id to my = Kg(= - =) mild Cramin enight = 1 Kg (e, - g) in 28 = 2 7 (e, - e) in 28 2

a maximulia estr watter) 28 = 72 (= - =) irmy fellurerin 45 bushers, at = Control for 2d + 6 mm 2d min 2d d'+d' : C'on b + Can's q= C 1m 2 8 1'- Consoft) A'= Cinis \(\frac{1}{2} = \frac{1}{2} \delta \frac{1}{2} \de 4 induli zis. Leher I had is d= Cin 28 d'= (si(20+ = =) Sin 5 1 = 7 d"= (in (2) + 4 m) as = = - 1 Q-68 (m = - d = Cin 28 d'= - 1 C 2 in 2 & + 13 cm 2 & 1"=- - (ained - 15 med

f mi Meti unten a hyn der agola signe. 12 (; - je) an 18 i - 72 g(3, - 5,) con ed 8 R2 skynter T+ Kg(;-i) T+ $\frac{g^2}{n^2} = \frac{R}{t - K_g(i - i) \omega_{i} \delta}$ J' = K T+Kg(1-1) med wit a his lumbay 29 (q. - g.) world = m2 (- - i) hiditily t = 73 2 2 (= - =) cosed a = 607,706500: a folition ha liming 6 = 6,5,529 800 = 0,000 000 001576 = 0,000 000 0015-61 en : \$1 - \$2 = 510 J=20==1200 T= 1,440 000 7 = 1728, 000 MAGYAR
EUDOMÁTYOS AKADEMIA
KONYVTÁRA

u=a in To We d'w + d (dw) + fw = 0 T2 = F - d2 d = H N= al am n = g'=-ae antit x"= a e -de 28) in 7 t. The F-d a in " = e + e - a(++7) Tink = F'-d2 e 1. e - F = S TIK (- - -) = F-F' F. T+AK FIT + A'B A-A'= Ck=f.CK. (1-E) +8K.(1-E) ルな(デーデル)=(A-A') 72 Ko(1+1 (=====)= (CKo(1-E) 18+ 45 C = 32 1+d (1-12) 1896 Win 10 Mingi estés a fi-judicis = 0,000018031 = 0,0000108031 My olon hing male. Réjois lis les J=648,000 lengs hu T= 648,92 (7 - 7 1) (648,92) = 0,0000010834 Aleg olm hiang mi all hyri = 0,0000 10886 Risho isajilo ero poplin le_ 11,2095 × 12,427 = 0,000 000 066 355 (1-E) al notra E = 0,00291 1 = 0,000 000.06655

$$\mathcal{J}^{2} = \pi^{2} \frac{K}{t + K(1-\epsilon)} C$$

$$t + K(1-\epsilon) C = \pi^{2} \frac{K}{\tau^{2}}$$

$$t' + K(1-\epsilon) C = \pi^{2} \frac{K}{\tau$$

Trk = L - ('k(1-E) - 2"4.

6=11,2095 fo. 12,427 = 1-12 T - - = 0,00000 10800 25,6 742,876 noese 759,066 742,35 hem , 38414. on lay , 760,02 himmil 4,2 alm 742,846 = 759,066 = 0,00000 007 68 742,212 - 760,002 = 0,00000 00834 Jul 00076 of 1,2 m wasty lung time = 11,2.0,13.1800 = 2621 gr. of .0,00000 10800 ph phy Dands, 5811.0,00000 00026. - 0,00000 000s2 Whit 9,0000 10800 10852 0,0000016084 $f = \frac{11^2 \cdot 0,0000010084}{11,2095 \times 13,427} = 0,0000000066125$

withen him any tituddel. (4 + 24 x8 + 24 x(1-un)) run & - (X + 2 x x (1-un)) run - tp-th n 34 x2 8 - Xrd - to (34 - 8x8 - 8x8) & 1) X = fo Dant BC 2 (D. Dard) 2 (2- Jung) 411/6 Per Im Find 8-2 (3-remb) - mrin Jass 4716 - m x2 47 /6 & T= 12 mx2
- m x2 47 /6 & T= 12 mx2 J=1040 sec 1= # 1.0 17m 20 sec. 1 = 0,000 000 obs E-2 K

Chang my 22 = - Im + 2 for C2. C = sin i 20 = for (Bin2i - 1) or lyngho ha i = 0 lyngget by ittini emi = t. 2 = 0 ha In ? i = 1 pt0/61 111 Maylas injus. · g'=g+ = g+y 2 = m a = 2+40 $8 = \frac{f_m}{r^3} \frac{a}{g+y}$ $\mathcal{E} = \frac{1}{3} \frac{2}{g}$ MAGYAR

(UDOMÁTIOS AKADOMA

KONYVIÁRA

(UDOMÁTIOS AKADOMA

KONYVIÁRA 1 = c g' I = As'

Abil myhygas An ac czymi.

A find for the series of the consideration of the c

 $\frac{\beta'}{\beta'} = \frac{c}{a'}$ $\frac{\beta'}{\beta'} = \frac{c}{a'}$ $\frac{d}{d\beta} = \frac{c}{a'}$ $\frac{d}{d\beta} = \frac{d}{a'}$ $\frac{d}{d\beta} = \frac{d}{a'}$ $\frac{d}{d\beta} = \frac{d}{a'}$

 $c \frac{A'}{h'} = a'$

ensi c

all by yethin A ryg & his se.

D= for cosi en vi A = Por cost i sin i Il muly pointer attack for = + and in he will a me mins i men our he 2 cu2 i m 2 = 0 - z anieny i + 3 sin i ani - 0 - 2 sin i + 3 ani = 0 好き=音 1=5007610,651 1 h m + C+ 70 n=+ h + e m - C + a - C pa i = 0 alm 0 he i = Taller is D, mexim - 2m 2 m 1 + 4 cosi sim 2 i = 0 as wim vi = 0 singli = yearli 1760910 4 = 4 | tgi=2 0,0880457 i = 60° 26 m 0,580 1 /mg theren 2 = time a = time a (1 - time c) A = M $\begin{cases}
A = Cosi & \text{or } \\
A = Cosi & \text{$

I en hay h = 0

+ ty = - 3 / 12 12 in 18 - 3 / m ca mlh wind

of neguthi.

lying I g=3/m 2 7c

Thu = 2m Ch 3/m cq

To

N=12000 l= 2

 $\varphi = \frac{3.2}{530m} 12000. M \frac{a^2}{r^5} = \frac{72000}{10m} M \frac{a^2}{75} = 0,0071 M \frac{a^2}{r^5}$ $1' = \frac{1}{3437.75} \text{ permbly } \varphi = 24,75 M \frac{a^2}{r^5}$

lehat. \\ \(\psi = 250 M \frac{ac}{vs}. \)

 $d = 50 M_{\overline{rs}}^{4}$

1 = 250 Mac

A = 50 M cos2i

MAGYAR

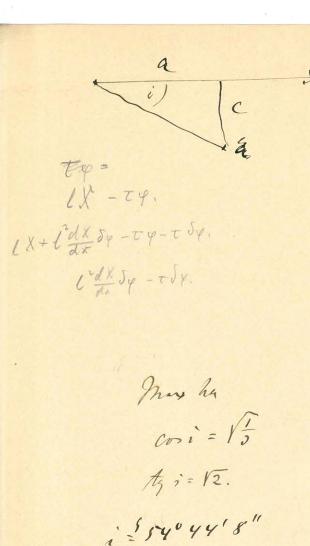
TUDOMÁNYOS AKABBATA

KONYVIÁRA

259 116 26 41,7 3,3 8=16 26 4,9 5764,9 1-14 26 8,4 5165,9 1 h 2 m 46,6 6-8-95 17m 717 15-164,457 /869,745 4470 6/5-164,685 /860,780

are dumboly of prince a nyst, senty is forther - alutas no fylolese MAGYAR TUDOMÁNTOS AKADÉMA John a lynggold resperte KONYVIARA

grand heters. flulli tim a golfo horizo produinos unoutero": a fijis munden 2 reptis ill. 如意之物. x=l 4=0 a=1 6=6. 2 = 21 er Shr 6 frije womition. from the a un tre, (412+02+62)= - M bla [42+0+64) = 1=15 6=15 C= 13,85 Em =100,006 a 2m hingre. Lities 2 /h blm ((62+02) = (4/2+02+64) = /h . 2/0/2 28 a vind homemany roughouse. In kg dx.6 = Mkg b (4(12-62+02)


((d-x)2+62+02)
- & = kgf/h6 {4 (6+6+6+02) + 2a 1

senderen eight gyreen eart. Caverdish earte. $\begin{cases} = \alpha \quad \delta = 0 \quad \rbrace = 0 \quad \text{alem}$ 1/2 - Xy = fm na 2 - fm na = fm n2 = fm n2 manadih cach & rem = hull. 9x - Xy = fm na (12+32)2 3 1 (7/4 5°) = (7/4 5°) = 0 班里里里 できごく2 カーグを Tablysjora of ing who I shal is deliverable a legions. as gir projes manualin. fraggadon (in d) (So a fragis mundem les, 9x- Xy + 3 (4,-X,) 08 - TW - TS (2 x 3x x + 24 24 x x) & - (X 2x y + 2 X 24 y) & - T SS DX = - a eind - bend Dy = a and - besind

The leggen S=0 where $\frac{\partial x}{\partial x}=-b=$ $\frac{\partial y}{\partial x}=a$ $-\frac{\partial y}{\partial x}ab+\frac{\partial y}{\partial y}a^{2}+\frac{\partial x}{\partial y}b^{2}-\frac{\partial y}{\partial x}ab$

$$\frac{\partial x - x_y}{\partial y} = \frac{(y_1 \cos x_1 - x_2 \cos x_1)}{2} \frac{\partial x_1}{\partial x_2} - \frac{\partial x_1}{\partial y_1} \frac{\partial x_2}{\partial y_1} + \frac{\partial x_1}{\partial y_2} \frac{\partial x_1}{\partial x_2} \frac{\partial x_1}{\partial y_2} \frac{\partial x_2}{\partial y_1} \frac{\partial x_2}{\partial y_2} \frac{\partial x_1}{\partial y_2} \frac{\partial x_2}{\partial y_2} \frac{\partial x_1}{\partial y_2} \frac{\partial x_2}{\partial y_2} \frac{\partial x$$

What ham \$ 25 = 0 ap of he == 211

$$\lim_{X \to \infty} \frac{1}{x} = \lim_{X \to \infty} \frac{1}{x} = \lim_{X$$

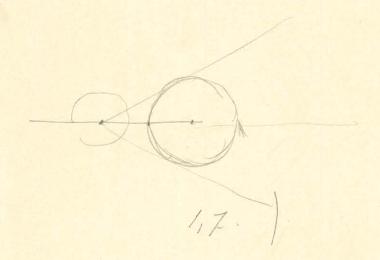
 $\frac{\partial X}{\partial x} = -\frac{h}{\rho^3} \left(1 - 3 \cos^2 i \right)$

 $\chi = \frac{a - x}{\left(\left(a - x\right)^2 + \alpha^2\right)^{\frac{2}{2}}} M_1 = \frac{\int M_1}{e^2} \cos i$

7x = - M - (4-x) + c') = + 3 (4-x) = (

8 Mm p 12

10,800,000 3 x = - lm +3 lm cozi


= - / kggdi + > / kggdi cos' i J= n 2 = - fx 9925 + 3 1 kgp = - EM + 3 1 = 1 20h NI T +4 m pola

P-To= to To long

300 M2 100 30 m. 27

1000
$$t = 8 \frac{1}{8} \frac{M}{9} \mu l^2 = \pi^2 \frac{K}{3\pi^2}$$
 $t + 4 \frac{1}{8} \frac{M}{9} \mu l^2 = \pi^2 \frac{K}{3\pi^2}$
 $t = \frac{1}{8} \frac{1}{9} \frac{1$

 $\frac{4}{7}\pi$ $\frac{4}{7}\pi^{2} = 100$ $\frac{2}{7}\pi$ $\frac{2}{7}\pi^{2}$ $\frac{2}{7}\pi^{2}$ $\frac{2}{7}\pi^{2}$ $\frac{2}{7}\pi^{2}$

MAGYAR TUDOMATOS AKADEMA KONYVIÁRA

$$X = \int_{M} \frac{4}{e^{3}}$$

$$\frac{\partial y}{\partial x} = -\int_{M} \frac{1}{e^{3}} + 3\int_{M} \frac{4^{3}}{e^{3}}$$

$$\frac{\partial y}{\partial y} = -\int_{M} \frac{1}{e^{3}} + 3\int_{M} \frac{6^{3}}{e^{3}}$$

$$\frac{\partial z}{\partial z} = -\int_{M} \frac{1}{e^{3}} + 3\int_{M} \frac{6^{3}}{e^{3}}$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial y} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial y} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial y} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x} \left(3 \cos^2 \alpha - 1 \right)$$

$$\frac{\partial x}{\partial x} = + \frac{\partial x}{\partial x}$$

$$\begin{aligned} & \left(\begin{array}{ccc} X - T Y \\ & \left(\begin{array}{ccc} X + L^2 \frac{\partial X}{\partial y} \delta Y - T Y - T \end{array} \right) & \left(\begin{array}{ccc} L^2 \frac{\partial X}{\partial x} - T \end{array} \right) & \delta Y \\ & \left(\begin{array}{ccc} L^2 \frac{\partial X}{\partial x} - T \end{array} \right) & \delta Y \\ & \left(\begin{array}{ccc} L^2 \frac{\partial X}{\partial x} - T \end{array} \right) & \delta Y \\ & \left(\begin{array}{ccc} L^2 \frac{\partial X}{\partial x} - T \end{array} \right) & \delta Y \\ & \left(\begin{array}{ccc} L^2 \frac{\partial X}{\partial x} - T \end{array} \right) & \left(\begin{array}{ccc} L^2 \frac{\partial X}{\partial x} - T \frac{\partial X}{\partial x} \\ & \left(\begin{array}{ccc} L^2 \frac{\partial X}{\partial x} - T \end{array} \right) & \left(\begin{array}{ccc} L^2 \frac{\partial X}{\partial x} - T \frac{\partial X}{\partial x} - T \frac{\partial X}{\partial x} \right) \\ & \left(\begin{array}{ccc} L^2 \frac{\partial X}{\partial x} - T \frac{\partial$$

$$\frac{M}{g^{2}} \binom{2}{m} = \pi^{2} k \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} = \pi^{2} k \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} = \pi^{2} \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right) = 2\pi^{2} \left(\frac{T_{0} - T_{0}}{T_{0}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} = \pi^{2} k \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} = \pi^{2} k \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} = \pi^{2} k \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} = \pi^{2} k \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} \binom{2}{m} = \pi^{2} k \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} \binom{2}{m} = \pi^{2} k \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} \binom{2}{m} = \pi^{2} k \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} \binom{2}{m} = \pi^{2} k \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} \binom{2}{m} = \pi^{2} k \left(\frac{1}{T_{0}^{2}} - \frac{1}{T_{1}^{2}} \right)$$

$$\frac{M}{g^{2}} \binom{2}{m} \binom{2}{m} = \pi^{2} k \binom{2}{m} \binom{2}{m} = \pi^{2} k \binom{2}{m} \binom{2}{m} + \frac{1}{T_{1}^{2}} \binom{2}{m} + \frac{1}{T_{1}^{2}} \binom{2}{m} \binom{2}{m} + \frac{1}{T_{1}^{2}} \binom$$

Gyin a legely wingths $-\frac{f_{m}}{g^{2}} = -\frac{f_{m}}{g^{2}}$ A gyin awayota. $-\frac{f_{m}}{g^{2}} + 3\frac{f_{m}}{g^{2}}\cos^{2}i$ $-\frac{f_{m}}{g^{2}} + 3f_{m}^{2}\frac{g_{m}}{g^{2}}\sin^{2}i = -\frac{f_{m}}{g^{2}} + 3\frac{f_{m}^{2}}{g^{2}}\int_{0}^{4\pi}\sin^{2}i di$ $= -\frac{f_{m}}{g^{2}} + \frac{3}{2}f_{m}^{2}$ $= -\frac{f_{m}}{g^{2}} + \frac{3}{2}f_{m}^{2}$ $= -\frac{f_{m}}{g^{2}} + \frac{3}{2}f_{m}^{2}$

MAGYAR LUDOMÁNYOS AKADÉMIA KONYVIÁRA

1 - 1 = 3 land 3" = - Im + 3 a ri 3x - 372 = 3 (2-67) 30 = - km + 3 62 2/2 = - m 1'con 2 } { = 2 and your. l'cord = 2 cos(2 & +240) = - cos 2 + sens 5 0 (2 cm (2)+480) = - cord = - 2m2d = (cos(2) + 4T) (con 2) (cos = + cos 2 = + cos y = + cos y = + cos y =) - Com 2 Dan yor + Low 24th + Converge + Con 400)

Mgs = E My tack C+C'= 8'7 Mys (- - 1 - - - = (2'-E) = A Lesse=x c' = Ac2 + Acc' (42/8)(18-16) 8 + well-

$$\frac{\mathcal{K}C}{My} = \mathcal{E} \frac{\mathcal{K}C + A}{My} = \mathcal{E}'$$

$$\frac{\mathcal{K}C + A}{My + \mathcal{K}h} = \mathcal{E}''$$

$$\mathcal{E}'' - \mathcal{E}' = (\mathcal{K}C + A) \left(\frac{1}{My + \mathcal{K}h} - \frac{1}{My}\right)$$

$$\mathcal{K}C + A = My \mathcal{E}'' + \mathcal{K}h \mathcal{E}'' - \mathcal{K}h \mathcal{E}'' - \mathcal{K}h \mathcal{E}''$$

$$= My \mathcal{E}'' + \mathcal{K}h \mathcal{E}'' - \mathcal{K}h \mathcal{E}'' - \mathcal{K}h \mathcal{E}''$$

$$\frac{\mathcal{K}C}{My} + \mathcal{K}h \mathcal{E}'' + \mathcal{K}h \mathcal{E}'' - \mathcal{K}h \mathcal{E}'' -$$

 $KC = M_{SD} \mathcal{E}$ $KC + D = M_{SD} \mathcal{E}'' + \mathcal{K}A(\mathcal{E}'' - \mathcal{E})$ $\mathcal{K}C + D = M_{SD} \mathcal{E}'' + \mathcal{K}A(\mathcal{E}'' - \mathcal{E})$ $\mathcal{K}C + D = M_{SD} \mathcal{E}'' + \mathcal{K}A(\mathcal{E}'' - \mathcal{E})$ $\mathcal{K}C + D + \mathcal{K}A(\mathcal{E}'' - \mathcal{E})$ $\mathcal{K}C + D + \mathcal{K}A(\mathcal{E}'' - \mathcal{E})$ $\mathcal{K}C + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E} + \mathcal{E}$ $\mathcal{K}C + \mathcal{E} + \mathcal$

144 144 - 10036 Am 36

288 288 + 000 12 - in 12

576 216 - 10036 - 10076

200 26 18034

200 26 18034

56 18034

676 18034

MAGYAR TUDOMÁNIOS AKADÉMIA KÖNYYTÁRA

$$\frac{\partial X}{\partial x} = -\frac{km}{g^3} + 2k\frac{a^2}{g^5}$$

$$\frac{dy}{dy} = -\frac{km}{g^3} + 2\frac{b^2}{g^5}$$

$$\frac{dz}{dt} = -\frac{km}{g^3} + 2\frac{c^2}{g^5}$$

$$\frac{\partial X}{\partial x} = -\frac{hm}{g^{2}} \left(3 \cos^{2} i - 1 \right)$$

$$\frac{\partial X}{\partial x} = \frac{hm}{g^{2}} \left(3 \cos^{2} i - 1 \right)$$

Conzy +
$$\cos\left(2\varphi + \frac{4\pi}{n}\right) + \cos\left(2\varphi + \frac{4\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{4\pi}{n}\right)$$

$$= \cos\left(2\varphi + \frac{4\pi}{n}\right) + \cdots + \cos\left(\frac{4\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{4\pi}{n}\right) + \cdots + \sin\left(\frac{4\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{4\pi}{n}\right) + \cdots + \sin\left(\frac{4\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \sin\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cdots + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right) + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \cos\left(2\varphi + \frac{2\pi}{n}\right) + \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \sin\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \cos\left(2\varphi + \frac{2\pi}{n}\right)$$

$$= \cos$$

Ing. Yx-Xy-TY=F X= longo $y^{2} = \frac{a - x}{(a - x)^{2} + (b - y)^{2}(c - z)^{2}}$ y= 6-9 $\frac{(b-y)\times -(a-x)y}{(b-y)^2} = \frac{6x-ay}{3^2}$ (82+12+212-24 (aund) + beind) = - TY 1 - 6 din 8 - a cord - 3/2 (bers 8 - a in 8/6-a in 8 + bers 8) - t - (for & + am & - 3 (for & - am & (- am & + burd)) = - 5 (for & - am & (- am & + burd)) = - 5 6 (bin I +a an I / po+ l'+2"-202) + 26 (abind and +a and +6 in I + abound and) +362 (a aired + brand - rabind and) - 2 L Their I an S + 2 to + 2 to + 1 a sin I + 16 w S) ((bad + and) (po + (+ 2 - 201) + 1 (am & - bend) + 2 1 1 + 26262

het end. ingramis by Xo=q yo=0. cos d fr-5, do 14a - sin \$ (0-0) dr Ay 6 - cond (0-0) dr 1x l - cos og (m B- m B') - sin & g (md-pp') - sin & so-0) do 1 Xa Cruve's univer es al a maril tette che sixthe melet a war friend heper of it el. Simon of Livingtons a commission with about a narmin ero Ty. eyenogher byen &= So + em dg (m/1-pp') 88 - cmd g (mx-pa') 88 A wo \$+ 50) (0-0) du (24+24)a The state of dy dy - Tx (-aim I - bess) helat = 0 + 24 (-bsin & + acos) on (9+85) (0-0) dv (Ay + 24 a + 24 a con 8 m)

- Kmdsing + 4 mland - to minus 2 (- m l 3 (X cin 8 + 4 cn 8) - T } 58 - m { 3x sin 8 + x cos 8 + 34 th 8 - 4 sin 8 - T } 58. x=hand y=heind 3x = 3x 3x + 3y 3x 3x = 3x 3x + 3y 3x 3x + 3y 3x 3x + 3y 3x Dx = - acing Dy = a cons -mlf- 2x land + 2 landerd + 24 landerd + 34 land - 4 inst} -ml204 con28+ml20x in 8 + X cond - by in 8 - E My sight horyporty 2 lexing of your states set yes by Mysto houpports of XL sithen alle. 10. ruderen het grifé ent totte og mensté a dright. O o o where lebet teme. D=0 es X=0 ung - ml 2 2 m 1 8 + m 1 2 x mis - 1 3 (-m 12 24 cm 28 - E) 537 (-ml =) SS

- X mlin & + ym lon & $\mathcal{X} = X_0 + \frac{\partial X}{\partial x} \times + \frac{\partial X}{\partial y} y$ $y = y_0 + \frac{y_0}{2x} \times + \frac{y_0}{2y_0}$ Yo = 0 . X = Xo + 2X lend + 2X limb y = 34 land + 34 land - Xomlin & - ml2 DX m Sens & - ml2 DX sin's + mle 34 cos & + mle 34 zun Sens $\frac{\partial X}{\partial x} = 2 \frac{hm}{r^3} \qquad \frac{\partial y}{\partial y} = -\frac{hm}{r} \qquad \frac{\partial X}{\partial y} = \frac{\partial y}{\partial x} = 0$ - Kombind - 3 Al mot singer - m 12 34 m s + m li 3x min 28 + m lix con di am ly even de - t hit gray's long hat in the iller I=0 4=0

Dy het cut. ? By frying is blen hir grantes of turthy Dye = Dy = 2 03 that a figurante = (-14ml2-T) he Mahen and merilyes alew . Tyr = - tru times a propor = (+1 2m 2 - T) 1 +/4 km (-T - 18 mml2 - T J = 1 - K 18 pn k + T = 1 2/2 $-\frac{14m^{2}}{9^{3}} + T = \pi \frac{K}{T^{2}}$ TUBOMÁNYOS AKADÉMIA
KÖNYVTÁRA =211 73 $T = \frac{1}{\pi^2} \left(\frac{fm}{g^3} \right)^{-3}$

$$\Delta X = \frac{\partial X}{\partial x} x + \frac{\partial X}{\partial y} y = \frac{\partial X}{\partial x} am x - \frac{\partial X}{\partial y} bm x$$

$$\Delta Y = \frac{\partial Y}{\partial x} x + \frac{\partial Y}{\partial y} y = \frac{\partial X}{\partial y} bm x + \frac{\partial X}{\partial y} am x$$

$$\Delta Y = \frac{\partial X}{\partial y} x + \frac{\partial Y}{\partial y} y = \frac{\partial X}{\partial y} bm x + \frac{\partial X}{\partial y} am x$$

$$\Delta y = \frac{34}{9x} \operatorname{acord} - \frac{34}{9x} \operatorname{brind} + \frac{34}{9y} \operatorname{bcord} + \frac{34}{9y} \operatorname{arind}$$

$$\Delta X = \frac{3}{9x} \operatorname{acord} - \frac{3}{9x} \operatorname{brind} + \frac{3}{9y} \operatorname{bcord} + \frac{3}{9y} \operatorname{arind}$$

$$\Delta X = \frac{3}{9x} \operatorname{acord} - \frac{3}{9x} \operatorname{brind} + \frac{3}{9y} \operatorname{bcord} + \frac{3}{9y} \operatorname{arind}$$

con
$$S = 5$$
 du $a^2 \left(\frac{\partial y}{\partial x} end + \frac{\partial y}{\partial y} end \right)$

$$- \sin d \left(5 - 0 \right) dv \, d^2 \left(-\frac{\partial y}{\partial x} rind + \frac{\partial y}{\partial y} cond \right)$$

$$- \cos d \left(5 - c \right) dv \, d^2 \left(-\frac{\partial x}{\partial x} rind + \frac{\partial y}{\partial y} cond \right)$$

$$- \sin d \left(5 - c \right) dv \, d^2 \left(-\frac{\partial x}{\partial x} rind + \frac{\partial x}{\partial y} cond \right)$$

$$- rind \left(5 - c \right) dv \, d^2 \left(\frac{\partial x}{\partial x} rind + \frac{\partial x}{\partial y} cond \right)$$

$$\frac{df_{varid}}{dx} \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) = 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) + 2m d cm d \frac{\partial^{2} f(s-6)}{\partial x} \int_{a}^{b} (s-6) dv \left(a^{2}-6^{2}\right) dv$$

Silis lest proprie S/4x - Xy/ (8-6) dv (4x - Xy) x=bcood-bains y= bund + asind con de son do ya - in 8 (0-0) dr 46 1 -and (0-5) dv X6 - sind (0-5) dv Xa. leggen a frynin byglun X = Xo y = 40 'en X = Xo + AX 9 = 40 Dy when con & (0-5) du You + con & (5-5) du Aya etc. cos Jan a - mx') yo + on of (0-5) do Aya. ch. - sin & (

aggi unins. my ha x y 2 gg $X = \int_{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1}(5-2)^2} \quad \text{where} \quad V = \int_{m}^{m} \int_{m}^{m} \frac{1-x}{(1-x)^2 + (n-y)^{-1$ X = DV y: /m 4 = 2V 2 = 20. $\frac{\partial V}{\partial x'} = -\frac{Im}{I^{2}} + 3 \frac{(\xi - x)^{2}}{2^{2}}$ AV=0. a physiku na ige fortos 1) f. erti hinds mytetaroguis. 1) Egging variand. mlasind = ma /M = Tq. makent a min's eset. film Jah. malf-ty=0may + ma = t0 - t d = 0(ma 38 - T) 88 4 = $x = a \cos \beta$ $\frac{dx}{dx} = a \cos \beta$ 34 = 3x 3x + 3y 3x y = a lond dy = + a lond 34 = mar 34 blint. a frozis momentum = (ma 204 - I) S Dy2 = - fm +

A grys romin ira ripre us landjeg legg.

$$\frac{\partial V}{\partial x} = \chi' = \int_{m} \frac{s - x}{2^{3}} r = \chi'(s - x)^{2} + (4 - y)^{2} + (5 - 2)^{2}$$

$$\frac{\partial V}{\partial y} = V = \lim_{n \to \infty} \frac{7 - \lambda}{r},$$

$$\frac{\partial V}{\partial z} = 2 = \lim_{n \to \infty} \frac{\xi - 2}{r},$$

$$\frac{\partial V}{\partial x} = \frac{\partial X}{\partial x} = -\frac{L}{r^3} + 3\frac{(\xi - x)^2}{r^5}$$

$$\frac{\partial^2 V}{\partial x^2} = \frac{\partial Y}{\partial y} = -\frac{L}{r^3} + 3\frac{(\xi - x)^2}{r^5}$$

$$\frac{\partial^2 V}{\partial y^2} = \frac{\partial Y}{\partial y} = -\frac{L}{r^3} + 3\frac{(\xi - x)^2}{r^5}$$

$$\frac{\partial^2 V}{\partial y^2} = \frac{\partial Y}{\partial y} = -\frac{L}{r^3} + 3\frac{(\xi - x)^2}{r^5}$$

$$\frac{\partial^2 V}{\partial x^2} = \frac{\partial^2 V}{\partial y^2} = 3\frac{(\xi - x)(\eta - y)}{r^5}$$

$$\frac{2\pi}{2\sqrt{3}} = \frac{2\pi}{2\sqrt{3}} = -\frac{\pi}{2} + 3(\frac{3}{2} - 5)^{\frac{1}{2}} \qquad \frac{2\pi}{2\sqrt{3}} = 3(\frac{3}{2} - 5)(\frac{3}{2} - 7)$$

y - ml th = ty m spilth t'y.

Cavendish 17981-5,48

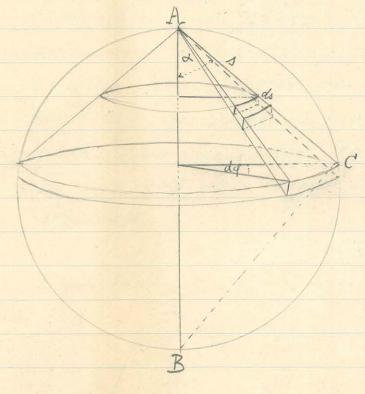
Reich 5,49-5,58

Daily 5,66 Com Daille 5,55

min soly 2/1/2 = Ty = 2/1 /m 3/3/2 = Ty = 2/1 /m 3/3/2 / 3/2/2

enul max, anna hu $\frac{7^2}{5^2} = \frac{1}{2}$ $T \varphi = 2pel fm \frac{1}{\sqrt{2}} \frac{5^2(1+\frac{1}{2})^{\frac{2}{2}}}{5^2} = 2pel fM \frac{1}{5^2}$

Physikalische Zeilschrift, IV. Jahrgang, 9. 319.098/36


Eine Bemerkung zur Arbeit des Herrn R. Geigel: Über Absorption von Gravitationsenergie "etc.

Von Josshieb Kricera.

Diese Überlegung erweist sich micht als stichhaltig; um niber ein raumliches Gebilde untegrieren zu können, muss masser als Integrations elemente raumliche Gebilde benützen. - Die itenterstrichene Annahme entbehrt geder Begründung. - Der nichtige analoge Weg wäre folgender:

Auf das im Punkte A der brdoberfläche befindliche Bleikügelchen (Mane = 1) wirkt das in der Richtung & gelegene. Volumelement dm = s.da.ds.s.sinade mit der Anziehungs-Kraft dm = sina.da.ds.de und die ganze in dieser Richtung liegende Tyramide (von A bis C) mit der Kraft

sin a da de solo = 2 R. cosa sina da de

Dabei ist der Einfackheit
halber die Dichle der End:
Kuigel gleich Eins gesehrt;
Rist der Endradius. Die
übrigen Bereichnungen
sind wohl aus der Tigur
leicht ersichlich. Die in A hermeter wirkende Kaaft Kompomente dieser Kraft
ist

2R. cos 2. sind. da. dq

also nicht von & unabhängig, wie Herr Geigel annimmt.

*) Robert Geigel: Ann. der Physik. 10. 429 his 435. 1903.

MAGYAR
TUDOMÁNYOS AKADEMIA

Durch weitere Integration bekommen wir für die Wirkung der ganzen Erdkugel $\frac{7}{3}$ 2R $\int d\rho \int \cos^2 x$. Mind. $d\alpha = \frac{4}{3} \pi R$

wie bekannslich sein muss; nach den Annahmen des Herm beiget ware die gawre Wirkung soilschlich R³ proportional: Für die Wirkung eines kegelsormigen Ausschnisses vom Winkel & bei A ergiebt sich:

 $4\pi R \int \cos^2 \alpha \cdot \sin \alpha \cdot d\alpha = \frac{4}{3}\pi R (1 - \cos^3 \alpha)$

Die vertikale Wirkung dieses Ausschnikkes vorhält nich zur Wirkung der ganzen Kugel wie (1-cosa): 1, wogegen Herr Geigel das Verhältniss gleich (1-cosa): 1 ansetzt - Diese unrichtige Ausatz zicht sich durch die ganze wei - tere Rechnung und modifiziert auch den minnenischen Wert der Schwächungskoefficienken -

Ubrigens trägt diese weitere Rechning überhaußt den Charakter einer ersten Anna'herring, da bei exakter mathematischer Behandlung des Problems die Bleituget, welche einen Durchmesser von Ca. 1cm hatte, kaum als punktförmig gegenüber einer in der Entfernung von ungefahr 4cm liegenden Kreisfläche von einem Durch - messer von 1.9 oder sogar 0.7cm wird aufgefant wer - den können.

MAGYAR
TUBOMÁWYOS AKADÉMIA
KONYYYARA

Damistadt.