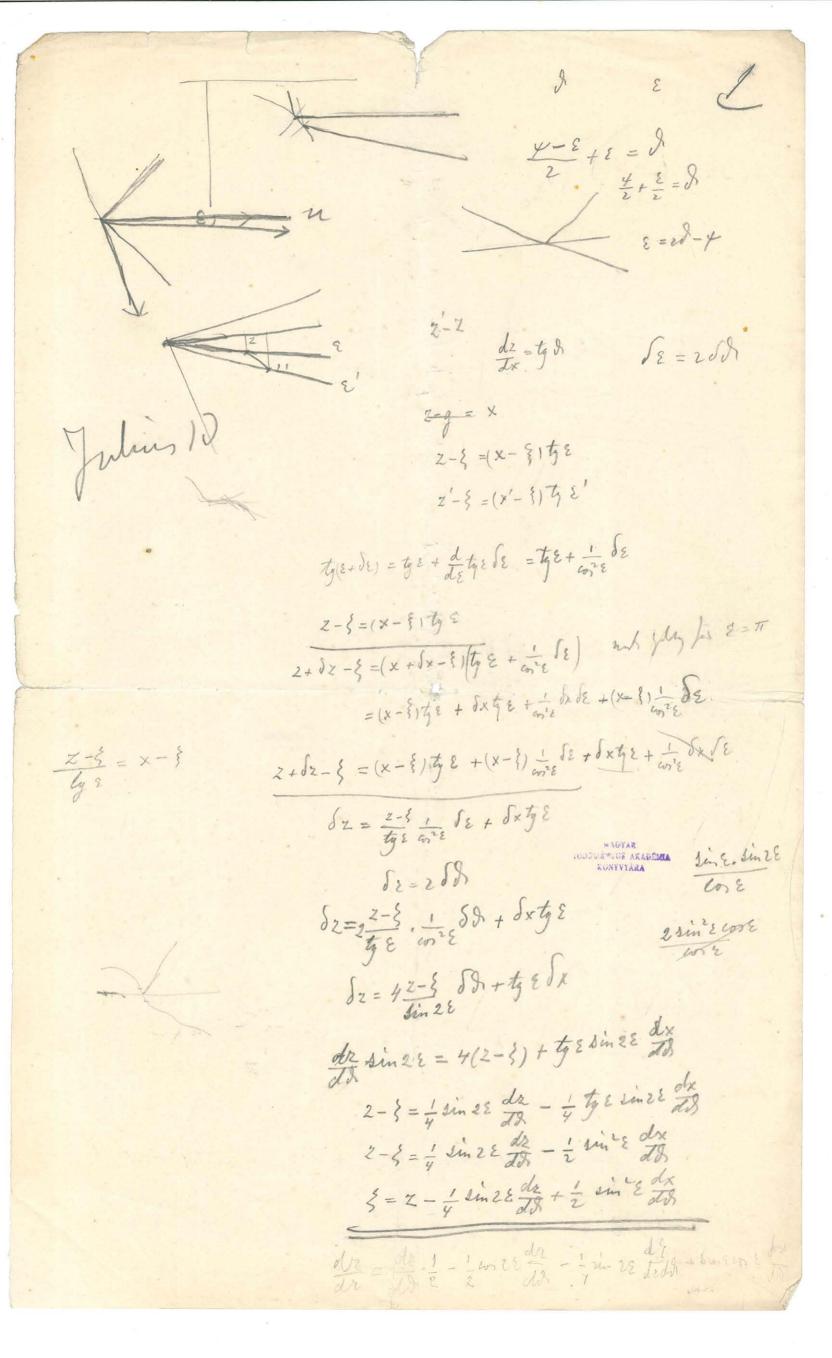

4,5098/28-31. Estris lorand jezollir - Madeira februir femilischelier


M 2008 /28 le Ming tun Telileti felsom fernelsege Moderater En formula I rams En MAGYAR TUDOMÉTI DE AKATÉMIA KONYVIARA

lygen t a vincement plinkt derekninge in mederaje a legely Bajulun t andt erre mer leger or renters ve. When menden in it & a ningled melft a unewell say a dyrhihai Leythyd begen able hen ar l, t portban win. t- = (1-1) ty 8 vogy a megsker to E living. Abål a habahaustilen god hend gyetete much fist gabie' my hatary va $\frac{dt}{dz} = (l - d) + \varepsilon \frac{dl}{dz}$ $1 - \lambda = \frac{dt}{dz} - \varepsilon \frac{dl}{dz} \qquad t - \varepsilon = \varepsilon \frac{dt}{dz} - \varepsilon \frac{dl}{dz}$ in to to althor. Ra 2 = 0 $l_{o}-l_{o}=\left(\frac{dt}{dt}\right)_{o}$ $l_{o}-l_{o}=\left(\frac{dt}{dt}\right)_{o}$ $-l_{o}=-tot(\frac{dt}{dt})_{o}$ $t_{o}-t_{o}=0$ $t_{o}=-tot(\frac{dt}{dt})_{o}$ $t_{o}=-tot(\frac{dt}{dt})_{o}$ to-to=0 1-10= 1-lo+2 dl -dt + dt lar) T-To=t-to-Edt+Edl It sobel a transveralis etteris et. Tototale to state + E de + E de No Etalet T-to state d'4 t=to = E(dt) + E (dx) + E (dx) + E (dr) + - $\frac{2}{dr} = \frac{\mathcal{E}(\frac{dt}{dr})_0}{\frac{1}{2}} + \frac{\mathcal{E}^2}{\mathcal{E}(\frac{dr}{dr})} + \frac{\mathcal{E}^3}{1.2} (\frac{d^2t}{dr})_0 +$ - (1 - 1/2) \(\int \langle \frac{d^2 t}{dz^2}\right) = \frac{1}{2} \left(1 - \frac{1}{2}\right) \frac{d^2 t}{dz^2}\right) + \frac{1}{2} \left(1 - \frac{1}{2}\right) \frac{d^2 t}{dz^2}\right) + \frac{1}{2} \left(1 - \frac{1}{2}\right) \frac{d^2 t}{dz^2}\right) = \frac{1}{2} \left(1 - \frac{1}{2}\right) \frac{d^2 t}{dz^2}\right) + \frac{1}{2} \left(1 - \frac{1}{2}\right) \frac{d^2 t}{dz^2}\right) = \frac{1}{2} \left(1 - \frac{1}{2}\right) \frac{d^2 t}{dz^2}\right) + \frac{1}{2} \left(1 - \frac{1}{2}\right) \frac{d^2 t}{dz^2}\right) = \frac{1}{2} \left(1 - \frac{1}{2}\right) \frac{d^2 t}{dz^2} \right) = \frac{1}{2} \left(1 - \frac{1}{2}\righ $-\frac{1}{2}$ $-\frac{2}{1.2.3}$ $-\frac{2}{1.2.2.4}$ $T - t_0 = \xi^2 \frac{dl}{dr} - \left\{ \frac{\xi^2}{1.2} \cdot \frac{d^2t}{d\xi^2} + \frac{2\xi^3}{1.2.3} \frac{d^3t}{d\xi^3} + \frac{3\xi^4}{1.2.34} \cdot \frac{d^3t}{d\xi^4} + \cdots \right\}$ 10 - Cond - Cond a en vullaling Nojelu

$$\frac{dy}{dt} = \frac{dx}{ds}, \frac{dx}{dt} = \frac{c}{8}, \frac{cond}{dx}$$

$$\frac{d^{2}x}{dt} = \frac{1}{1}, \frac{dx}{dt} = \frac{c}{16}, \frac{cond}{tx} = \frac{c}{$$

```
2 = c sin &
                                                          dx = C \frac{1}{2} \frac{1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \f
· dr = fccos
                                                                                                                                                                                                                                                                                                    = C sington & - C sing
                                                                                                                                                                                                                                                                              \frac{dx}{dx} = \frac{c}{H} \frac{1}{\sin \frac{x}{2}} - \frac{c}{2} \sin \frac{x}{2} = \frac{c}{4} \left(\frac{1}{\cos x} - 2 \sin \frac{x}{2}\right) = \frac{c}{4} \frac{1 - 2 \sin \frac{x}{2}}{\sin \frac{x}{2}}
= \frac{c}{4} \frac{\cos x}{\sin \frac{x}{2}}
                                  ξ = C sin 2 - 1 sin 2 2 2 ccos 2 + 2 sin 2 2 ccos 2 + 2 sin 2 2 sin 2 2 sin 2 2 sin 2 2 2 sin 2 2 2 sin 2 s
                              € sin € (1 - 2 min)
                                                                                                                                                                                                                                                                                                                                                                                         con 2 din &
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Cas &
                          { = c sm 2 + c 2 m 2 con d - c sin 2 con 2
                                                                               Csin 2 + C 1 (2in 2 E con 8 - in 2 E sin 2 con 2)
                                                                                                                                                                                                                                               ( Lin Em & - Line Sin &)
                                          { = cam = + c sin & (con to - Lind)
                                                             {= com \( \frac{1}{8} \) \( \f
                       \frac{d\xi}{d\xi} = \frac{c}{4}\cos^2\xi + \frac{c}{8}\cos^2\xi \left(\sin\xi\cos^3\theta - \sin\theta\right) - \frac{c}{8}\frac{1}{9}\frac{\sin^2\theta}{\sin^2\theta}\left(\sin\xi\cos^3\theta - \sin\theta\right)\cos^2\theta
                                                                                                                                                                                                                      + c smil cose and - sin e ein & - jan &]
                                                                                                                                                         a SECHMENT
```


 $\frac{1}{2} \left\{ \frac{\sin(\frac{1}{2} + \epsilon) + \sin(\frac{1}{2} - \epsilon)}{4} + \frac{c}{8} \frac{\sin(\frac{1}{2} + \epsilon)}{\sin(\frac{1}{2} + \epsilon)} \left(\sin(\epsilon) \cos(\frac{1}{2} + \epsilon) - \sin(\frac{1}{2} + \epsilon) \right) + \frac{c}{8} \frac{\sin(\frac{1}{2} + \epsilon)}{\sin(\frac{1}{2} - \epsilon)} \left(\sin(\epsilon) \cos(\frac{1}{2} + \epsilon) + \sin(\frac{1}{2} + \epsilon) \right) \right\}$

end+h+ om d-h = 2 sind cos /

2 Cein 2 cos E

Sin'd on bo sin'd con's

Sin'd on bo sin'd + sin's sin'd

Sin'd - Sin's

AMMEGANA SOLFANGEO ARATVINOS

Then are him

 $\frac{t}{dr} - \frac{dr}{dr} = \left(\frac{dl}{dr} - \frac{dd}{dr}\right) \varepsilon + (l - d)$ t-T=(1-1, ty 8 t-T=(1-1) 8 dt de t + dt SE - T = (l-1) SE + E (dl SE + l-1) $\frac{dt}{dt} S_{\xi} = (l-1) S_{\xi} + \varepsilon \frac{dl}{dt} S_{\xi}$ $\frac{dt}{ds} = l - l + \varepsilon \frac{dl}{ds}$ $l-\lambda = \frac{dt}{d\epsilon} - \epsilon \frac{dl}{d\epsilon} \qquad t-\tau = \epsilon \frac{dt}{d\epsilon} - \epsilon^2 \frac{dl}{d\epsilon}$ to the sail T=t- Eds + Edd $1 = 1 - \frac{dt}{dr} + \frac{dl}{ds}$ To = to $\lambda_0 = \left(-\left(\frac{dx}{dx} \right) \right)$ I, = to + (de) E, = E (de) + E, (de) 1 - 1 + (dt) E, - (dt) + E / dl) t, - to = &, 1 1 2 E dl. 1, = 1, - (dt) + E dl) $T_{i} = t_{i} - \Sigma_{i} \left(\frac{\partial U}{\partial n} \right)_{i} + \Sigma_{i}^{2} \frac{\partial U}{\partial n}$ $1,-1_0=1,-1_0-\left\{\frac{\partial U}{\partial r}\right\},-\left(\frac{\partial U}{\partial r}\right)_0^2+\frac{\epsilon_1\left(\frac{dl}{ds}\right)_0^2}{2}$ $\tau_{i} - \tau_{o} = t_{i} - t_{o} - \varepsilon \left(\frac{\partial t}{\partial x} \right)_{i} + \varepsilon \left(\frac{\partial t}{\partial x} \right)_{i}$ 1,-1. to to = Ei (de) $\frac{dl}{dz} - \frac{d\overline{z}}{dz} = (l-1) + \frac{dl}{dz} - \frac{dd}{dz}$ de de de det de del dol = 2 dl - dis & dil

modius jutaroge Henry philet. a = 22- 21 2,-2,= } $\frac{\partial a}{\partial \xi} = \frac{1}{V_2(\sin\frac{\delta_2}{2} - \sin\frac{\delta_1}{2})}$ H = 1 (sin - In) 8 } $h = \frac{\mathcal{J}\ell}{a} = \frac{\mathcal{S}\xi}{\mathcal{S}}$ Il = a. cos = Sol $\frac{\partial a}{\partial x} = a \frac{\cos \frac{\theta}{2}}{\left(\sin \frac{\theta}{2} - \sin \frac{\theta}{2}\right)}$ h, = + 1 = con = 50 2 hz = + (2m 3, 2m =) Was L' cales methoda a= V2 (cos 2 + 1 by ty 3, - cos 2 - 6 by 3 2) Je = 1 - S\$ 24 = 1 $h = \frac{d\ell}{a} = \frac{5}{2}$ 78, = - a (w = + 16 \$ 1 - co = - 1 6 5 2) 2 m 2. h = + 312. 12 (m = + 1/4/2 - m? -) sen 2 end esteke peldail d,= 16° 3 z és 38° 52 ève Jz=28°52 A,= ± 4,313.88, Jz=20 Az=1,468 882

Tir tenel MAOYAR TUDOMÁTIOS AKADÍMIA KONYVIÁRA

Formulak a hipamitishop. $\frac{1}{8}$, $\frac{1}{8}$ = $\frac{22}{a^2}$ 2 lefte position & posites hor a flutet domboni. Veglelenbe terged o' henzes seliket. hvijmbolisa ei filme $a = \pm \frac{2,-2z}{\sqrt{2}\left(\sin\frac{\pi z}{z} - \sin\frac{\pi z}{z}\right)}$ V2 (sin dr - sin dr) verticalisa infelore $a = \pm \frac{x_1 - x_2}{\sqrt{2}\left(\cos\frac{x_1}{2} - \cos\frac{x_2}{2} + 1,15/3\log\frac{ty}{y}\frac{y}{y}\right)}$ Telilet kit temet køjulk

2,²-2² = å(ws 4² - cos 4;) Creppelve. megelines & position $Z = a \sqrt{2} \sin \frac{3}{2} \left\{ 1 + \frac{a}{3 \sqrt{2} u_0} \frac{1 - (v s)^{\frac{3}{2}}}{\sin^2 \frac{3}{2}} + \frac{a^{\frac{5}{2}}}{\mu^2 u^2 u_0} \frac{e^{\frac{u 2 \sqrt{2}}{a}}}{\sin^2 \frac{3}{2}} \left(1 + \frac{\sqrt{2} (u_0 - u_1)}{a} \right) \right\}$ reflection of infelor. La a Dil toy ellongagottalis: $\alpha = \frac{2,-2}{\sqrt{2} \left\{ \sin \frac{3}{2} \left(1 + \frac{a}{3\pi i u_0} \frac{1 - \omega r^2 \frac{3}{2}}{3\omega_0^2} \right) - \sin \frac{3}{2} \left(1 + \frac{a}{3\nu_2 u_0} \frac{1 - \omega r^2 \frac{3}{2}}{2} \right) \right\}}$ A trejen deinke sport eighelie. $a = \frac{2}{1 + \frac{a}{6u_0}(2\sqrt{2}-1)}$ Paisson plitet a scinthepisi sight his amitar a va oragat to a hoyelit's hegel 88 = 42in & Si ava x=ave (いな+もりちず) dx= avigin = + ちちでは = ara (- 2 + 4 m = arzun)

$$\frac{dk}{dk} = \frac{a^{\frac{1}{1}}}{\mu \sqrt{n} \pi \sqrt{2}} \left[-\frac{1}{2} \sqrt{a} \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \sqrt{\frac{a}{n}} \frac{\sqrt{a}}{a} \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right] + \sqrt{\frac{a}{n}} \frac{e^{\frac{n\pi}{2}}}{a} \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}}$$

$$\frac{dk}{dk} = \frac{a^{\frac{1}{1}}}{\mu \sqrt{n} \pi \sqrt{2}} \left[-\frac{1}{2} \sqrt{a} \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \sqrt{\frac{a}{n}} \frac{e^{\frac{n\pi}{2}}}{a} \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right]$$

$$\frac{dk}{dk} = \frac{a^{\frac{1}{1}}}{\mu \sqrt{n} \pi \sqrt{2}} \left[-\frac{1}{2} \sqrt{a} \frac{e^{\frac{n\pi}{2}}}{a} - \frac{1}{2} \ln \frac{1}{a} \right]$$

$$\frac{dk}{dk} = \frac{a^{\frac{1}{1}}}{\mu \sqrt{n} \pi \sqrt{n}} \left[-\frac{a}{n} \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right]$$

$$\frac{dk}{dk} = \frac{a^{\frac{1}{1}}}{\mu \sqrt{n} \pi \sqrt{n}} \left[-\frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right]$$

$$\frac{2^{\frac{1}{2}}}{n^{\frac{1}{2}}} - \frac{a^{\frac{1}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right] + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \left[-\frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right]$$

$$\frac{2^{\frac{1}{2}}}{n^{\frac{1}{2}}} - \frac{a^{\frac{1}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right] + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \left[-\frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right]$$

$$\frac{2^{\frac{1}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right]$$

$$\frac{2^{\frac{1}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right]$$

$$\frac{2^{\frac{1}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right]$$

$$\frac{2^{\frac{1}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} \right]$$

$$\frac{2^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n^{\frac{1}{2}}} + \frac{e^{\frac{n\pi}{2}}}{n$$

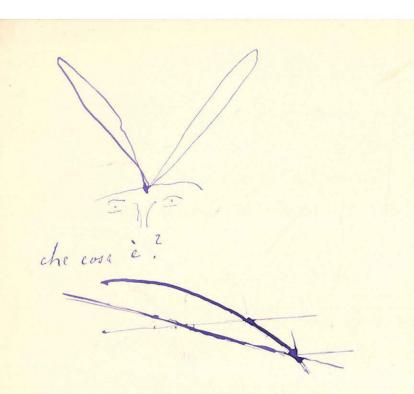
ton cur felulehen promber & felfile 2 = d + \frac{a^2}{\mu} - \frac{a^2}{\mu\varva} \left\{\frac{a}{e} \frac{\pmvz}{a}\left\} E a Repertile lagaril $Z = d - \frac{t^2}{2\mu}$ e = 2,7182183 by ruly e = 0,49429448

$$\frac{dh}{du} = \frac{a^{1}}{\mu V n n n} \left(\sqrt{\frac{a}{u}} \cdot \frac{n}{u} e^{\frac{a n n}{u}} \right) = \frac{a v a}{\mu u v n n n} e^{\frac{n n}{u}} \left(-\frac{a}{u} \right)$$

$$= \frac{a^{1}}{\mu^{2} u n n n} \left(\sqrt{\frac{a}{u}} \cdot \frac{n}{u} e^{\frac{a n n}{u}} \right) = \frac{a v a}{\mu u v n n n} e^{\frac{n n}{u}} \left(-\frac{a}{u} \right)$$

$$= \frac{a^{1}}{\mu^{2} u n n n} e^{\frac{a v n}{u}} \left(-\frac{a}{u} \right) \qquad \text{thay appelon} \qquad \frac{a^{2}}{u n u}$$

$$= \frac{a^{2}}{u^{2} u n n n} e^{\frac{a v n}{u}} \left((-\frac{a}{u}) - \frac{a^{2}}{u^{2} n} \right) + \frac{a^{2}}{u^{2} u n n n} e^{\frac{a^{2}}{u}} \left((-\frac{a}{u}) - \frac{a^{2}}{u^{2}} \right) + \frac{a^{2}}{u^{2}} \left((-\frac{a}{u}) - \frac{a^{2}}{u^{2}} \right) +$$


2 = = sin 1°39!6" = 0,028799076 sm = +in 41°34'2= 0,6635000 2m 1 = sin 20 "38 46"=0, 35-25949 48.196288231 ty 0,310 9051=0,4926277-1 0,4123096 0,0523862 0,0523843 V5727 V6 0,352 Nrs =0,42969 44,15 27222 0,3525949 27228 0,3237718 = 0,5102066-1 by 1/2=4,6607516 N2 = 0,45788 30/28 0,933 25% 260,5 30,93 212 264 215,5 25-6: 255. 2697 256 255 265,4 254.2 Ain 35 = sin 37° 32' 59" = 0,609 4497

 $\frac{1}{2} \int_{0,1}^{1} \frac{1}{327} = \frac{0,1228709}{0,6607516-1} = \frac{1}{4.2} \frac{2,8981}{2,8907}$ $\frac{1}{271} = \frac{0,1041456}{6421427-1} = \frac{2,8907}{6421427-1}$ $\frac{0,4610029}{2,434}$ $\frac{0,15466}{2,7909720}$ $\frac{1892780}{2,7900712}$ $\frac{0,7900712}{2,7900712}$

MANYAR TUDOMÉTROS AKADÉMIA KONYVTÉRA

55/1160/24-21 3/16,2/5,4 iw=ia+i6. iw-i6 a.ia-bij = C Win+616= E ai - aib - bil = e atà a ain-air-bro = e ain (a+b) is = e 16= 2 - Win ain-(a+6) = + a+6 win = e

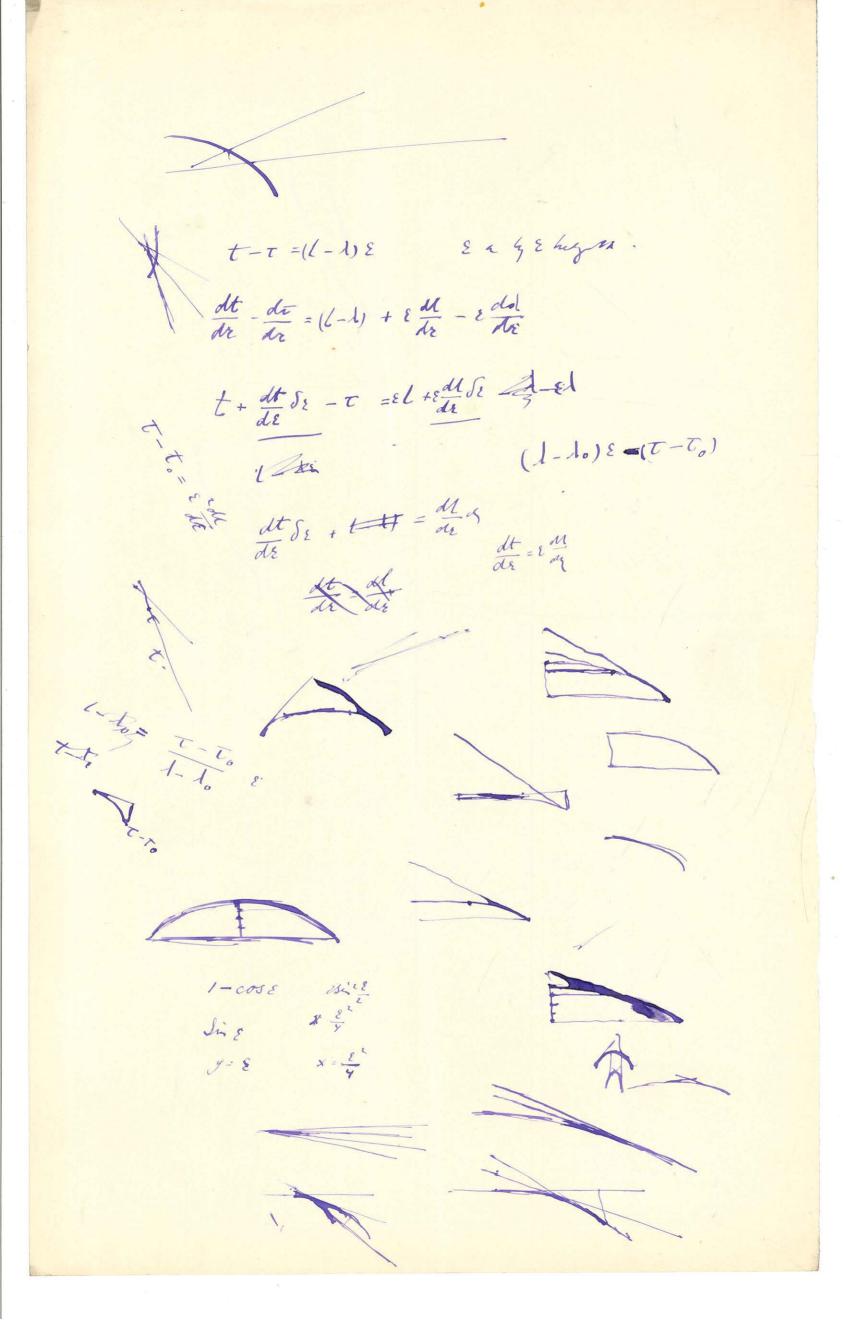
0,12676-4 lay & = 8,35976-4 long 1174036 My 1710 = 3,23300 0,86712-3 log. 0,12676 -4 1,64345 -4 las 67,5=1,82930 0,77.021-3 95606-3 1,51851 - 1 1,65-721 12676 - 4 12676 0, 84527 -0 $i = \frac{\xi}{k'} \qquad \xi = k'i'$ $\xi = k'i' + bi''$ Wi = Wi+ bi | W = 6 -11 0,86475-0 $\mathcal{E} = 6.\frac{i\dot{z}'}{i-i}$ 1,82607 W= lag b = 0,477/2 0,35283 -1, 3 4 42 4 - 2 e + i W= { 0=0,027114 0195606 -3 e+iw= 0,0465/4-1 ib+iW= 9,1193 1 1/1/6 = 8 8/8 9008 17,2 16/2/2000,180 18076 etiw = E 0,007104+13 OTTE TOTA 011390050

$$t - t_o + \tau_o - \tau = (\ell - \lambda_o) \varepsilon$$

 $(-1, = \frac{dl}{dr})$

$$t-\tau = (l-1)\varepsilon$$

$$t+\varepsilon \frac{dt}{d\varepsilon} - \tau = (l-1)d\varepsilon + \frac{dl}{d\varepsilon}\varepsilon l-1.$$


$$\frac{dt}{d\varepsilon} = (l-1) + \frac{dl}{d\varepsilon}\varepsilon$$

$$\frac{dt}{d\varepsilon} = (l-1) + \frac{dl}{d\varepsilon}\varepsilon$$

$$l-1 = \frac{dl}{d\varepsilon} - \varepsilon \frac{dl}{d\varepsilon}$$

E-9-

 $2d+3-\frac{\pi}{2}=8$ $3+3-\frac{\pi}{2}=8$ $9=\frac{\pi}{2}+2-4$ $6=7\cos\theta=\cos(2-4)$ $8=\sin(2-4)$

April- 29 a ry allak hyring. Vi (in 2 - in 2) = 0,75527 419,6 a dura = 2,778 beall tas 12 (sin 2 - lin 2) = 0,15828 J, = 68° 25' a helper is his = 2, 684 82 190 151 V2 (sin = - sin &) = 0,19 699 A, = 3º12' 109,8 a dura = 2,787. 0,=2,6779 az=2,6821 az=7,1937 us so 98 / 29

1885 hy. 15 ahud formulatus views az1 = 7,828 az= 3,824 az, = 3,820 atr = 3,876 Q= 3,813 kipm) og Virillatis 28 min alni roj troppet her wo belso atmir 27. engit W=13,5 m.m. Pergresatura 24,5 clanosdula 700 120 700 700,5 en, who year 721 de. 720,5 700,5 temperating 25%. Teys, 99 Themombes been all 20 is poravi Whis 97- 298 Corngill layerting Tengeratur 980 h.i. 669 e.i 6 23 mii. 672 Jone 98 mil What of by ag8 = 398 = 0,91977. mi, 670 e ... 622 $\alpha_{98} = 3,508$ ni. 66g Notah. ag alead foundity min 67118 ag8 = 3,520 3 = 9.5488

Mercy alenhollen time Tenys, 24,5. Temp. 24,5 2-2=3,635 Jen 27, 5 Thrip 727. alutal my vijber forraling Therwords beme all 35 poky Jenys. 64,4 647 -0,5 646,5 7 67,4 +1 648 67,4 Temperator 67,5 2-2= 3,486 agris = \$60 = 0,9582 -1,5 695,5 -95 6g6,5-) 6p,10a= 3, 655 mercia a66, = 2, 659 by 1 68 = 0,2892 a= 0,660 a6 = 3,664 Letines 245 Jenys, 27,5 21-2 = 3,642 hour & in I win 2'-2=3,628 Temps.

Ohlichmandam lengelator a Mi Therwords 25 hore Momonete 26 a Charmonite Do of van hem. Lengr. 25-2'-2 = 367 705 75 Y 700 704 726 705 724 700,5 700,5 Juraling Chlorealinham I expentered a horn themonitere of egyen hem wan en allathan Temp. 125,4 126-125-1255 650 2'-2 = 325,2 651 -126-125-125,5 648 156-151-18,5 au = 0,8861 648 -126-125- 14,5 650 - 156 - 151- 125,6 a, = = 3,379 652 +126 -125 125,5° 651,5 126-124 105 a = 8,2409 650,4 6xg -126-124 IL 611,5 126-124 125 01/25,4 = 3,408 6005 Magyar Fudomé*ioe atabéma Egnyviára

dezidens and Non Valor 40 mom. almeroji las delotts marel. Temp: 24 719,5 720,5 718 Tengo, 24,5 many end limitetal 28,4 706 707 736,5 737 Teyo. 24 725,5-かれら 22 Phat viggel mysto entitles of u=13,5 }=3,607 a=2,824 } = 3,651 | Q = 3,824 u = 1570 $\frac{3}{n} = 0, 2694 - \frac{9}{5} = 1,0513$ 1 = 0,22 87 - a = 1,0474 erethel I min has a home Vaclay 28 min Wometer bruhan aliter a 40 milley crobit tribit lege. agr,5 = 3,515 Agy = 7,520 a66,5 = 3,657 alp,5=3,660 air, = 3,406 ans, = 3,408 myrann

. 1	7	p	10	P	inost s	my felel	7'	5			
-207	270,3	3,75	454,7	14,06	0,00526						
240	297	22,1	380,0	488,4	0,379						
6605	209,5	200,1	287,1	40040	48,45						R
9805	371,5	720,0	351,0	518400	924,6	- 2,5	270,5	1,070	mat	-2,5 = 165	4,36 747 +1,8
12,002	398,7	1755	159,2	30800	06 7710	+17.	290	1,272	362,7.	+17 = 382	7,60 116,5 +12,5

PARTALANDS YET STATE

Mind hand Word 40 m a shring vogel bell as pures min alter angio 4 = 18,7. Jeny, 23,5 Virtu Tengo 20,5 2'-2 = 3,570 717 715 : Niver = 71405 212 = 43,570 hronten a vij a Menomother 99,0 leme van a c.i bos m.i. bos you franken higher letines e. j. 633-98 Jun mii, 650 98,0 Correctional a hiallo 655. m,1. 655 Jonalia 655 Tempo. 919, 98,5 2'-2= 32695 = 3,270 Wrig 653,9 $\frac{Q_{98,5}}{Q_{23,5}} = \frac{1 + \frac{1}{2} \frac{Q_{23,5}}{Q_{23,5}}}{\frac{1 + \frac{1}{2} \frac{Q_{23$ a25,5 = 3,818 | ages = 3,506 u = 18,7 crother spinitos a22,5 = 9,2062 es agr = 3,515 nedwhiles 98 m = 3,577

alkalouly e'her be time Jenjuratura 22,6 Tengs. 22,6 2-2= 3,535 708 206,1 -05 hnip 707,1 alisted in eller foraling Telentoth way a lives very Temp. 66,5 66,5 2'-2=3,376 675,1765,8 675,1765,8 677-05,4 gra 674 J. 67,5 horin = 675,2 (M) ag = 3,654 674,5- } 67 3 ward noint letine Jenys, 23,4 Sing Will bright temperature = 22,8 70% ely 707,6

Oblocaline adatabatere. Office Terge voins Them 25,4 hornis Them. 26,4 Tey. 21,4 2'-2=3,582 -716 -716 715,5 7/7 hay 7/6,5 716,5 Juralun 125-125;5 Tengualiva a mon + 14 -1 633 / Temps leoliusas a homis thermelere with cale 12502: 64 / 3/22 Themometeres +126 65-126-126 a fignish jinge +125,5 -0,5 636 126-125 + n7 + 696 60°nis 128-126 126,5 +0,5 602 127 -126 Tengo. 125,2 : 2'-2 = 3/65 Ansiz = 1+5 au = 0,8897 arys = 5 1+5 au = 0,8897 +129 +1 128-126,5 604 +/17 +i Bo 128-126 +127 +1 62 128-126 +127 +1 872 128-126 +127 601 128-126 a 125,2 = 3,392 Mersi el less a cro" talva, ho. ami 3,406 127+1 621,5 128-1265 14 651,5 128-126 117 +1 622,50 127-127 him 126,5 +0,5 632,5 14,125,5 Teg= 4x23,2 + 10 x25,4 Telistre 2002 min Merameter 7 f) hing for fill Temp = 24,8 z'-2= 3,583

3 68,7 = 3,637 m = 13,5 a = 7,824 19 { = 翼3,65/ 9=3,827 a = 1,0573 = 92694 = 0,2087 a = 1,0474 125/3,637/0,2/94 12,5 /3 25 3 / =0,2409 513 2370 2637 /3824 / 1,0\$13 3651/0,238\$ 1,048 2096 5240 5240 5240 3 6 18 3657 /3824 1,0474 604 69657 14.030 3 650/ 520 11080 1080 5 2 4 4 3 2 3 Hory 3486

The Hern 8=67. 179 598 Rulmi 18° 598' . mundy 47,5 587,8 1 portent 2° 607. 25 580 47,4 130 16° ra 9 225 29,5m 16,2 16:9=29,5:16,2 MAGYAK TUDOMÉTOTOR AKABÉMA KONYVIÁRA 2655 1,8 45/250/0,5\$5 1250/0,5\$5 1,80/0 0/00/60 Jan Jan

man negs 10° Gos Gis for, s Gor 601,8 65,50 336,8

210. - 600,0 -600,0 -599,5 599,0 599,0 -598,5 -598,0 210. 600,0 549

. . .

- V

and he

Kins an I ko ham loho til 12 (in 2 - in 2) =0,765 09\$ 1-00 1 - 1-00 2 = 0,73719 = 0,73719 Min 11. 609 613,6 612,5 612,5 612,5 ation on 614,5 -2,5 80 606 606 606,6 Las

597,3 Bearder Ing. 288 588,7 55,3

5-66 568 169 Jose 11,5 568,5 570 Libites levezo him 579,5 579 7905 581,05 580,5 582,10 5-82 12/201 3285 546 9450'0 = 04p - 91'p

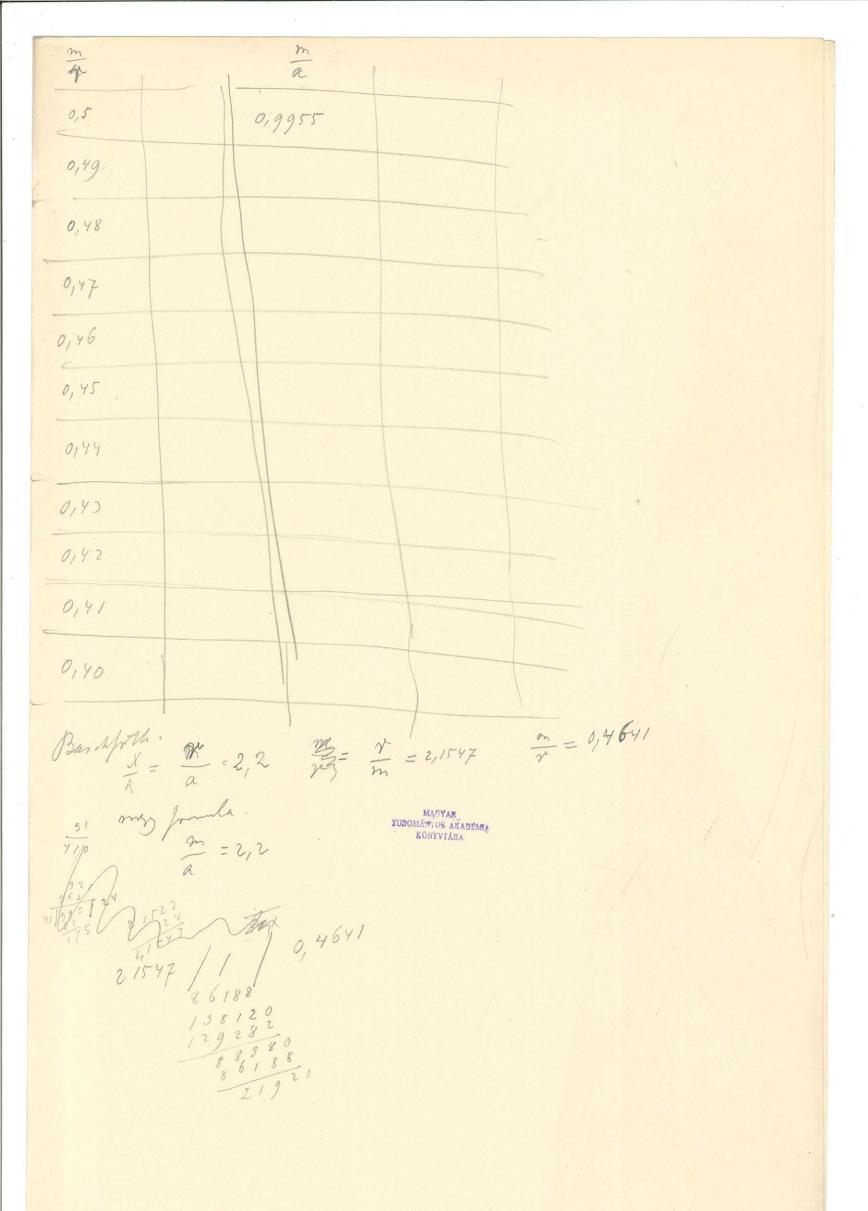
41° 588. 588.	
Minning mar orus 12 chair	
160 601,5 MAGYAR -	
TODOMATOR AKADAMA KONYVIARA	
601,5	
(m)	
601 a= 3,858	
602)	
16. Goz, 5 a2 spritolemen &	
and and Speri Volument	
-2°7 614, 2 3,937 15,502 1,000391 7,748	7786
-2,7 614,2 3,937 15,502 1,000391 7,748 +4°1 609,05 3,905 15,248 1 7,624	7186
-2,7 614,2 3,937 15,502 1,000391 7,748 +401 609,05 3,905 15,248 1 7,624	7110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,160
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155 >
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155 >
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150
$-2^{\circ}7 \qquad 674, 2 \qquad 3,937 \qquad 15,502 \qquad 1,00039/ \qquad 7,748 \qquad 7,624 \qquad 0,00039/ \qquad 7,624 \qquad 0,0000000000000000000000000000000000$	150 170 0182
$-2,7 \qquad 614,2 \qquad 3,937 \qquad 15,502 \qquad 1,000391 \qquad 7,748 \\ +4°1 \qquad 609,05 \qquad 3,905 \qquad 15,248 \qquad 1 \qquad \qquad 7,624 \\ +8° \qquad 606,6 \qquad 3,889 \qquad 15,127 \qquad 1,00016 \qquad 7,563 \\ +16° \qquad 601,6 \qquad 3,858 \qquad 14,884: \qquad 1,001004 \qquad 7,435 \\ +24 \qquad 597,3 \qquad 3,831 \qquad 14,676 \qquad 1,002644 \qquad 7,319 \\ +40°4 \qquad 588,8 \qquad 3,777 \qquad 14,268 \qquad 1,007863 \qquad 7,078 \\ +55° \qquad 580,1 \qquad 3,723 \qquad 13,857 \qquad 1,014375 \qquad 6,830 \\ +74°6 \qquad 567,75 \qquad 3,644 \qquad 18,276 \qquad 1,025422 \qquad 6,473 \\ 2 mid \frac{\alpha_{74} - \alpha_{2}}{76°} = 0,0165 \qquad \frac{\alpha_{2} - \alpha_{16}}{18} = 0,0167 \qquad \frac{\alpha_{6} - \alpha_{55}}{39} = 0,0155 \\ d 16 - d 10 \qquad 2016 \qquad \frac{\alpha_{57} - \alpha_{74}}{18} = 0,0782 \qquad \frac{\alpha_{15}}{39} = 0,0155$	150 170 0182
$-2^{\circ}7 \qquad 674, 2 \qquad 3,937 \qquad 15,502 \qquad 1,00039/ \qquad 7,748 \qquad 1 \qquad 7,624 \qquad 0,624 \qquad 0$	150 170 0182

2,65 77/1215-/17/ 50/30 1=2,620715 76 4,46 4,5

L=7,617 -1,36 -0,35 100 8,127 71 7,617 5,127 5907 0° nd k= f=7,617 dt = 0,0136 1 = 2,6207 \frac{dsl}{dt} -0,0000498 defib = 0,0056

Jd=19,956

100° nal f = 5,907 dt = 0,0206 1=2,6574 . dol = 0,000673


0,05026

fol = 15,695

0,5872276 28928 90 0,337169 0,5872720 0,9090874 9,5166 8,4207 11,3965) 1,4797 9,9,66) 1,4959 6,9186 1,5021 321 200 /69/86 /003 pa 7 'del = /217 del ayu - For

Us 5098 /30 Mouper frish Montelles formisekleted Toly adiken formet sejigning

Mr - 4 - 1 / dp in & = 0 > P+P'-Na+11+ form)=0 -floor + flour + Psine - ffrit-2)=0 - floos 2 + floin 2 + Prin 2 = fass (disind + fine dip con) P+ / dp wit = N2-P-1 dp = las sind Aldpand = Ni+H - flore + flime + me (Ni-P-M) - cone (Ni+fl) = 0 Sin & (V2-P) - en & M = 0 $\mathcal{N} = \left[\kappa l 2 dr = \frac{\kappa l \left(h^2 + m^2 + i m h - h^2 \right)}{2} \right]$ Ni = Kl (hi + rmh) $N_{r} = \tau \kappa l(h+m)$ Of Kirtham P=nlrm 1. - P = k1r /h+m) T (h+m) sin & = (h + 2mh) cos & M- P= rhl(h+ m) r(h+m) sin & = m+mh) con & hamer ha her ty $\varepsilon = \frac{m(m+2h)}{\tau(2h+m)}$

21/6 9 1,0605 4160 MAGYAR ARATVINGA ARATVINGA 10457 \$022 240, 245, 20 364 -0

$$\frac{d \cos f}{\sqrt{1-\cos^2 f}} = -\frac{m \sin^2 f \cos f}{\sin f}$$

$$\frac{d \cos f}{\sqrt{1-\cos^2 f}} = -\frac{m \cos^2 f}{\sqrt{1-\cos^2 f}}$$

$$\frac{d}{d} = \frac{m}{\sqrt{2-\sin^2 f}}$$

$$\frac{d}{d} = \frac{d}{d} = \frac{d}{d}$$

$$\frac{dr}{dn} = \frac{dy}{dx} = -\frac{dy}{dx}$$

$$J_{i} = \begin{cases} \frac{dh}{dt} & \frac{dh}{dt} \\ \frac{dh}{dt} & \frac{dh}{dt} \end{cases}$$

$$J_{i} = \begin{cases} \frac{dh}{dt} & \frac{dh}{dt} \\ \frac{dh}{dt} & \frac{dh}{dt} \end{cases}$$

$$J_{i} = \begin{cases} \frac{dh}{dt} & \frac{dh}{dt} \\ \frac{dh}{dt} & \frac{dh}{dt} \end{cases}$$

$$J_{i} = \begin{cases} \frac{dh}{dt} & \frac{dh}{dt} \\ \frac{dh}{dt} & \frac{dh}{dt} \end{cases}$$

$$J_{i} = \begin{cases} \frac{dh}{dt} & \frac{dh}{dt} \\ \frac{dh}{dt} & \frac{dh}{dt} \end{cases}$$

$$J_{i} = \begin{cases} \frac{dh}{dt} & \frac{dh}{dt} \\ \frac{dh}{dt} & \frac{dh}{dt} \end{cases}$$

$$J_{i} = \begin{cases} \frac{dh}{dt} & \frac{dh}{dt} \\ \frac{dh}{dt} & \frac{dh}{dt} \end{cases}$$

$$J_{i} = \begin{cases} \frac{dh}{dt} & \frac{dh}{dt} \\ \frac{dh}{dt} & \frac{dh}{dt} \end{cases}$$

Sin
$$J = \frac{ds}{V_1 + \frac{ds}{ds}}$$

Con $S = \frac{1}{V_1 + \frac{ds}{ds}}$

$$\sqrt{1-x^2} = 1 + \frac{1}{2}x^2 - \frac{1.1}{1.2.2^2}$$

$$\frac{t_{z}'(t_{z}'-1)}{1 - x_{z}' + x_{z}'} = 1 - \frac{1}{z} + \frac{1}{2} + \frac{1}{2$$

$$\frac{m}{r}\left(\frac{mr}{z} + hr - \frac{a^2}{z^2}\right) = \frac{a^2}{z} + \frac{a^2}{z}\left(dpain\right)$$

$$\frac{m^2}{z} + hm - \frac{a^2m}{z} = \frac{a^2}{z} + \frac{a^2}{z}$$

$$\frac{m^2}{z} + vhm = a^2\left(1 + \frac{m}{r}\right) + a$$

$$\frac{2m}{r} = \frac{1}{2}$$

MAGYAR TUDOMÉ**: OS AKADÉMIA KONYVTÁRA

½ 1+ 1 log 1+ 1 + 1 -0. $\frac{1}{2} \frac{1+u^2}{u} \frac{l_1 u}{1-u} - 1 = 0$. 4=V1-x) x = $log \frac{1+u}{1-u} = \frac{2u}{1+u^2}$ u=0 fo' 1,04/460 /0,7846 V1-x = n $\frac{\mu'-1}{(\mu-1)^2} = \frac{\mu+1}{2}$

m2-1 log m+1

$$\frac{m^{2}}{r^{2}} + 2\frac{m}{r}\frac{h}{r} - \frac{A}{r}\alpha \frac{m^{2}}{r^{2}} - \beta \frac{A}{r}\frac{h}{r} \frac{m}{r} - \frac{a^{2}}{r^{2}}\frac{g}{r} = \frac{a^{2}}{r^{2}}$$

$$d = 0,0959$$

$$h = 0,4492$$

$$\frac{A}{r} = \frac{m^{2}}{r^{2}} + \frac{dm}{r}\frac{h^{2}}{r^{2}} - \beta \frac{m}{r}\frac{h}{r}$$

$$\frac{h}{r} = \frac{a^{2}}{r^{2}} + d\frac{m}{r}\frac{h^{2}}{r^{2}} - \beta \frac{m}{r}\frac{h}{r}$$

$$\frac{a}{r}\frac{h}{r}\frac{a}{r}\frac{a}{r}\frac{h}{r}\frac{a}{r} - 1$$

$$\frac{a}{r}\frac{h}{r}\frac{a}{r}\frac{a}{r}\frac{h}{r}\frac{h}{r}\frac{h}{r}$$

$$\frac{a}{r}\frac{h}{r}\frac{h}{r}\frac{a}{r}\frac{h}{r}\frac{h}{r}\frac{h}{r}\frac{h}{r}$$

$$h = a^{2}+dm\frac{h^{2}}{a^{2}}-\beta m\frac{h}{r}$$

$$h = a^{2}+dm\frac{h^{2}}{a^{2}}-\beta m\frac{h}{r}\frac{h}{r}$$

$$\frac{h}{r}\frac{h}{r}\frac{h}{r}\frac{h}{r}\frac{h}{r}\frac{h}{r}\frac{h}{r}\frac{h}{r}\frac{h}{r}$$

$$h = a^{2}+dm\frac{h^{2}}{r}-\beta m\frac{h}{r}\frac{h}{r}$$

$$h = a^{2}+dm\frac{h^{2}}{r}-\beta m\frac{h}{r}\frac{h}{r}$$

$$h = a^{2}+dm\frac{h^{2}}{r}-\beta m\frac{h}{r}$$

$$h = a^{2}+dm\frac{h^{2}}{r}-\beta m\frac{h}{r}$$

$$h = a^{2}+d\frac{m}{r}+\beta m-am\frac{h}{r}=\frac{a^{2}+m}{r}$$

$$h = a^{2}+d\frac{m}{r}+\beta m$$

$$\frac{\mathcal{E}}{r} = \frac{\pi}{4} \left(\frac{4}{r} + \frac{m}{r} \right) \left\{ 1 + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \left\{ \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \left\{ \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \left\{ \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \left\{ \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \left\{ \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \left\{ \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \left\{ \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \left\{ \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}}} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \left\{ \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}}} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}} \right\} + \frac{4}{\sqrt{\frac{4}{r} + \frac{m}{r}}}} +$$

$$\frac{d^{2}y}{du^{2}} + \frac{du}{n} \frac{du}{du} = \frac{2y}{a^{2}} + \frac{2h}{a^{2}}$$

$$\frac{d^{2}y}{(1 + (\frac{dy}{du})^{2})^{2}} + \frac{(1 + (\frac{dy}{du})^{2})^{2}}{(1 + (\frac{dy}{du})^{2})^{2}} = \frac{2y}{a^{2}} + \frac{2h}{a^{2}}$$

$$\frac{dy}{du} = e^{\left(\frac{y}{a}-1\right)c} + ue^{\left(\frac{y}{a}-1\right)c} \left(\frac{dy}{u} - \frac{cy}{u^{2}}\right)$$

$$\frac{dy}{du} = \frac{y}{u} + \frac{y}{u} \left(\frac{dy}{du} - \frac{cy}{u}\right)$$

$$\frac{dy}{du} = \frac{y}{u} + \frac{y}{u} \left(\frac{dy}{du} - \frac{y}{u}\right)$$

$$\frac{dy}{du} = \frac{y}{u} = c \frac{y}{u} \left(\frac{dy}{du} - \frac{y}{u}\right)$$

$$\frac{dy}{du} = \frac{y}{u} = c \frac{y}{u} \left(\frac{dy}{du} - \frac{y}{u}\right)$$

$$\frac{dy}{du} = \frac{y}{u} = c \frac{y}{u} \left(\frac{dy}{du} - \frac{y}{u}\right)$$

$$\frac{dy}{du} = \frac{y}{u} = c \frac{y}{u} \left(\frac{dy}{du} - \frac{y}{u}\right)$$

$$\frac{dy}{du} = \frac{u}{u} + \frac{y}{u} \left(\frac{dy}{du} - \frac{dy}{du}\right)$$

$$\frac{dy}{du} = \frac{u}{u} + \frac{u}{u} + \frac{u}{u} \left(\frac{dy}{du} - \frac{dy}{du}\right)$$

$$\frac{dy}{du} = \frac{u}{u} + \frac{$$

14 + m2 = 12 = 12 = m2-12 4 (A²- §²)² - §⁴ - m² §⁴ + m² §² (1 = 3) + m = 3 (1 = 3) = V 5 = w 14 + (m²-212) = + 12 = 4 $\frac{1}{2} \int \frac{du}{\sqrt{N^{4} - (2N^{2} - m^{2})u + N^{2} m^{2}u^{2}}} = \frac{1}{2}$ $= \frac{1}{2} \frac{1}{\sqrt{3^2 m^2}} \log \left\{ 2 \frac{3^2 m^2}{3^2} m + (2 \sqrt{3^2 m^2}) + 2 \frac{\sqrt{3^2 m^2}}{\sqrt{3}} \right\}$ = + 2 / log { 2 m2 m2 m2 m2 - log (-(212-m2) + 2 A VA2-m2 J,= m - 1 A lay m 2 A2-mi - 2 AVA-mi2 2/A"-m"A" -/ + 1/2 × ly A2 52-mi - 2/1-mi 0.7854

drin I in &

$$\frac{u}{u} + \frac{u}{ds} = \frac{22}{45}$$

do sin I sun &

MAGYAM SAKADÉMAA SAKADÉMA S

$$\frac{ds \sin^2 3}{4} + un 3 d3 = 2 \frac{2 \sin 3 d3}{4}$$

do sind ind + sund del = 22 din I do

$$\frac{m}{r} = \frac{\frac{a^2}{2} + \frac{1}{2} \left(\frac{m^2 + 2mh}{2} \right) - \frac{a^2}{2}}{\left(\frac{m}{2} + hr - \frac{a^2}{2} \right)}$$

$$\frac{m^2}{2} + hm - \frac{a^2m}{2r} = \frac{m^2}{2r} + hm$$

9= \[\left\{ \dy\\ \ta\\\ \left\{ \dy\\\ \dy\\\\ \dy\\\ \ 7= -/ \frac{1}{\gamma} \frac{dy}{\sqrt{1}} \frac{1}{\gamma} \frac{dy}{\sqrt{1}} \frac{dy}{\sqrt{1}} \frac{dy}{\sqrt{2}}. 3 + M2 =1 = m 7= m/d = 32) $\frac{dy}{d\xi} = -\frac{\xi m^2}{\sqrt{2\eta}}$ 2 \ + 2 n dy =0 $=-\frac{m}{A^2}$ 7 = \[\int \frac{m^4 \xi^3}{\sqrt{1 + \frac{m^4 \xi^2}{\sqrt{2}}} \frac{1}{\sqrt{1 + \frac{m^4 \xi^2}{\sqrt{2}}} \frac{1}{\sqrt{1 + \frac{m^4 \xi^2}{\sqrt{2}}} \] $=\frac{m^2}{J^2}\sqrt{J^2-\xi^2}$ $\sqrt{J^2-\xi^2}$ $\sqrt{J^2-\xi^2}$ $\sqrt{J^2-\xi^2}$ $\sqrt{J^2-\xi^2}$ = m² / sds 12 / V(12 52)(12 m². 12 52) $J_{2}^{2} = + \int_{0}^{1} \frac{m^{2}\xi}{\xi^{2}} \frac{1}{M^{2}\xi^{2}} \cdot \sqrt{1 + \frac{m^{2}\xi^{2}}{M^{2}}} \frac{\xi^{2}}{\xi^{2}} d\xi$ = m / d &

- M Jo V c 12 + mi - 12 & 2

hair &

A sin &

A si on and $\int_{X}^{1} \frac{\left(\frac{dx}{dx}\right)^{2}}{\sqrt{1+\left(\frac{dx}{dx}\right)^{2}}} dx$ de - lix The state of the s (1 (3 4 AT

$$\frac{dh}{dh} = -\frac{1}{2} \frac{1}{x} + \frac{1}{2} \frac{1}{x^{2}} \frac$$

log 1+1 = 2 { 11 + \frac{1}{3} 4 3 + \frac{1}{5} 4 5 + -2 \ u - u 3 + u 5 $\frac{4}{3}u^3 - \frac{4}{5}u^5 \qquad u^2 = \frac{5}{3} = 1.666$ 0.0096

x = Aun 2 dx tyt dy = the = Bunk = Bunk = - to soft = - to s 2 = 1 lin 2. ty &= A wit t h+m+y=B+h sont = ty t = Bag & $p = (B^2 - \frac{b^2 - A^2}{b^2} y^2)^{\frac{2}{2}}$ Sint = 1 wty 8 y= B-m 8 = (A2 - 12 x2) cost = VI + 02 wg & $\frac{1}{p} = \frac{2(h+m)}{a^2} - \frac{\sin \vartheta}{u} = \frac{40}{(1^2 - \frac{N^2 - N^2}{4^2})^2}$ 0 2 ws W= A = A. B-m ty) B-m= y= B = 1 and 8

16,97 umh 15001

0,755

2,444 \$ 1,020

2006 0,0959 21530 28754 0,4129 0,4129 0,421158

7,06 72451 26,757 12,088

0,421 2,075 10285 11,23

26,757 11,992 26,757 11,992 11,992 11,992 11,992 11,992 11,992 11,992 11,992 11,992 11,992 11,992 11,992 12088

14,67

Il mis most of hing where. Premish What Brank is 2 (2+10) ha mot & hing when $(B-m)^2 = B^2 \frac{D^2}{1 + \frac{D^2}{D^2}} = B^2 \frac{1}{1 + \frac{H^2}{D^2}} = B^2$ (B+m2-20m)(1+1292)= 62 R2+m2-20m+128+ 4282m2-242m3= X1 m2B2-2Bim + A'n'A + A'm' &' - 2A'D m &' = 0 mon-m-20m+Aid=0 What B= mi+did les 5098 /31

Or asses esiset for alkoholgi eben a Hermometer + 48- K orstogramy provi jorden: + 77,9 T2011 11 11 177,8 3. manus (csi') merricus 90-67, 26 67, 26 67, 28 368 38 vun 30 ou 2,10 2,10 2,12 39 371 Floren Lift at = Cones + (48) + 2,11 x 47,036 (1+ 19)+ = 6348, 2 + 99, 4 + 27, 0 V = 6474, 6 (104) W = 2927, 4 V= 6490,8 Inami coi merus cus. V= cs ncs = - 12,43 x 47x450 (1+ 14)+27,0 v=1790,1 W= 75-12,3 69.54 69,54 61,98 2,56 2,56 2. nami cso menicus. V = comes + (68) - 3,64 x 45,787 (1+ 14) + 27,0 v= 4021,9 -- 20,90 20,90 20,90 -- 17,26 17,26 17,26 3,64 3,64 3,64 W: 4974, 2 MAGYAR NUDOMATOS AKADEMA KONYVIĀRA Hermonder + 20. ig hori soilen 17,8

$$a_1 \alpha - \delta_1 \beta + (\ell_1 - \ell_1') q_1 y = \delta_1 - (\ell_1 - \ell_1') q_1 - a_1 = t$$
 $a_1 \alpha - \delta_2 \beta + (\ell_2 - \ell_1') q_1 y = \delta_2 - (\ell_1 - \ell_1') q_2 - a_2 = B$
 $a_3 \alpha - \delta_3 \beta + (\ell_3 - \ell_3') q_3 y = \delta_3 - (\ell_3 - \ell_3') q_3 - a_3 = C$

$$d = \frac{\begin{vmatrix} c + -3 & (l_1 - l_1)q_1 \\ c - l_2 & (l_2 - l_1)q_2 \\ c - l_3 & (l_3 - l_3)q_3 \end{vmatrix}}{\begin{vmatrix} a_1 & -3 & (l_1 - l_1)q_1 \\ a_2 & -b_2 & (l_2 - l_1)q_2 \\ c_3 & -b_3 & (l_3 - l_3)q_3 \end{vmatrix}}$$

 $\alpha = \frac{A[-\delta_{2}(\ell_{3}-\ell_{3}^{2})q_{3}+\delta_{3}(\ell_{2}-\ell_{1}^{2})q_{1}]-B[-\delta_{1}(\ell_{3}-\ell_{3}^{2})+\delta_{3}(\ell_{1}-\ell_{1}^{2})q_{1}]}{a_{1}[-\delta_{2}(\ell_{3}-\ell_{3}^{2})q_{3}+\delta_{3}(\ell_{2}-\ell_{1}^{2})q_{2}]-a_{2}[-\delta_{1}(\ell_{3}-\ell_{3}^{2})+\delta_{3}(\ell_{1}-\ell_{1}^{2})q_{1}]+a_{3}[-\delta_{1}(\ell_{2}-\ell_{2}^{2})q_{1}+\delta_{2}(\ell_{1}-\ell_{1}^{2})q_{1}]}$

B =

x=

MAGYAR NIDOMATIOS AKADESKA KONYYTÁRA

```
1.-1, = 27,75
                          9 = 47,474
            8,= 2304,5
a,= 1229,8
                                         Q-1: 25,79
                          92 = 45,800
            82- 2370,6
Qz=1158,8
                          93=47,129 83-13= 30,32
            83 = 2577,9
a3=1161,6
                          9, (1,-1,')= 1080,1
                                             A= -5,4
                                             B = - 19,4
                       = 91/1-11)= + 13/4
              1181,2
                                             C = -12, }
                         93 (15-15)= 1429,0
```

1) $1229.8 d - 2304.5 \beta + 1080.1 y = -5.4$ 2) $1158.8 d - 2320.6 \beta + 1181.2 y = -19.4$ 3) $1161.6 d - 2577.9 \beta + 1429.0 y = -12.2$

```
1. mann n'vegen sula = 36,516 gr.
                mon cool & lora val
merly allois
                                       6,33 + 11,45 18,08 - 9,04 = Equal
                             11,5
      Luffel &
                                     18,95 = 9,48 = Eyenny
                     9,2
                             36, 52 gram.
    amolyen bevory: 4
                                       ameryen 36,53 gr.
                              10,9
                                      21,17 = 10,59 = Enemy
                                              0,01 gran = 1,11 ontajreiz
                                 csu =
   hvy cso's
                  10,9
                               13,1
                              12,9
                                                 0,48 = 0,4
                              13,00
      Ligal
                   10,9
                                          a menteyes - 34, 05 gr.
                   11,2
                               13,8
                                          75/10 : 12,55 = Eyensel
                               eso = 35,795
                                                    mergen: 35, 80 gr.
                              Luffal
 hregesi a lara
                                               9,9
5,9
                15,20: 7,85 = Eyenny
         9,8
                                                               0,54=0,5
                                                9,5
                                               9,2
                                               9,53
6,40
```

62, 82 62,80 62,82
61,84 61,84 61,84
9,98 0,96 0,98

2=16,0

huges ; for a Bryfal 9,9 9,2 11,1 10,8 mergen levi eng 37, 83 37, 833 36, 516 10,1 9,8 10,9 10,65 1,31% 11,00 21,0t = 10,54 = Eggang 9,83 10,2 20 48 - 10, 24 0,30 = 0,3 10,07

> 50,92 50,96 50,96 50,98 50,98 -50,04 50,04 50,06 50,06 50,04 0,88 992 990 092 098

> > MAGYAR TUDOMÁTIOS AKADÉMIA KONYVTÁRA

Invegero's Lera

Suffel

10,3

11,1

9,4

11,2

10,5

10,6

10,6

10,42

10,42

10,11

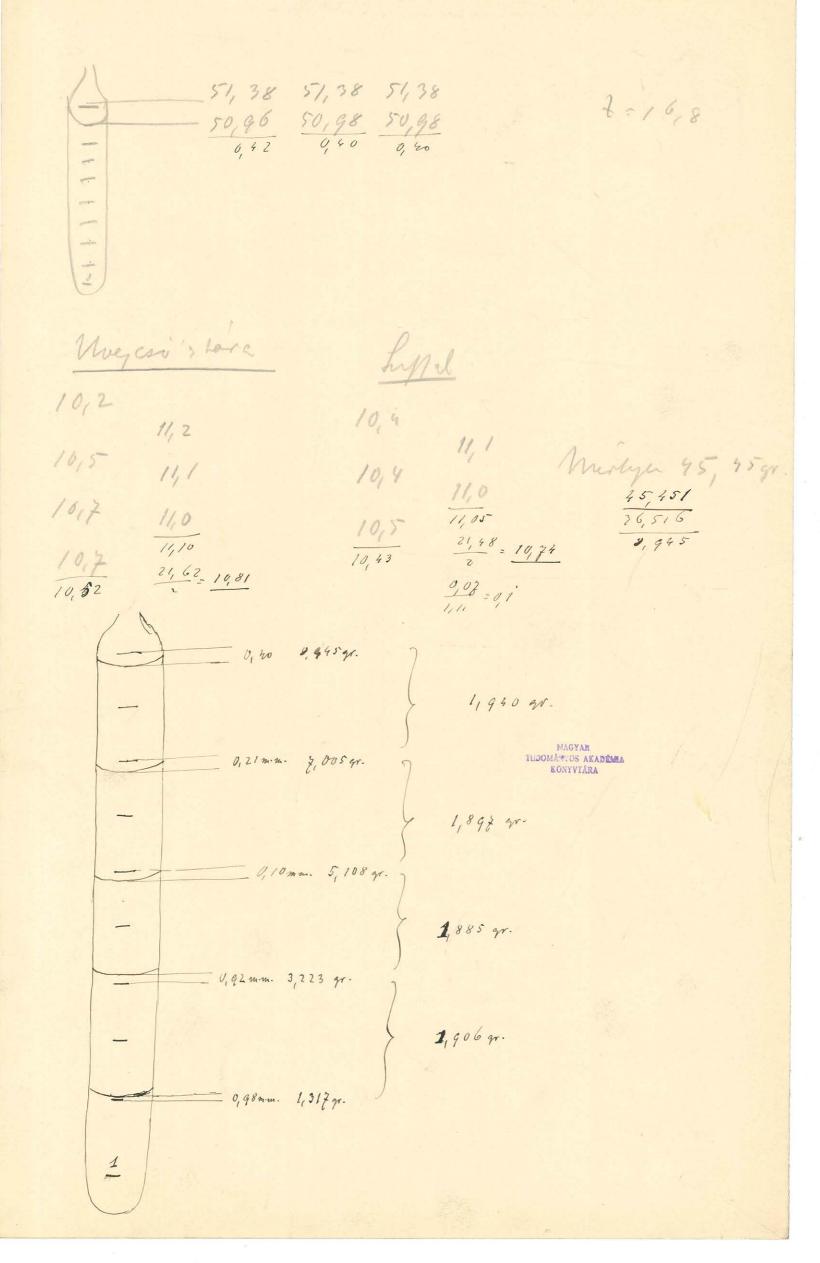
21,23

10,62 $\frac{21,23}{2}$: 10,62 $\frac{0,09}{1,11}$: 0,1

4=16,3

Mertye levo suf 39, 44

39, 439


36, 516
3, 223

52,28 52,30 50,26 52,18 50,18 50,16 lyfal Lara quez coo Merlyen 41, 62 gr.

41, 624

36, 516

5, 108 10,0 9,4 18,45 = 9,23 = Eyeng 9,66 : Exprosel 50,51 50,52 50,52 50,32 50,31 50,30 Lora's wyeso Lugal Murlya 43, 52 gr.
43, 521
36, 5,6
8,005 9,7 3,23 1698-8,49 12,22 = 8,61 = Syrry

Lemproture: -79 Leng 70 Menicus 84, 82 folethe live horrie 91,08 Menicus myanay 5 much & knowth hatra 498 10 5 naupyr dore 56 Jenys - 63 mens : 99, 28 alaka leviniala: 92, 5.0 mens cus my aring: # 81 menicus: 101,22 Temp - 43. palata Markon 92,34 muiskus magamag & 8 y Körilforg å læna. 2,42 483 34Koni dove

Lemp - 26,5 Mennican 103,52

manke alalle 92, 42

Merrisan myan 50 50 88 dine 462 98 61 habra 463 47 dine 460

la Motoles Hermometer obati higangban:

12

MAGYAR TUDOMÁ*OS AKADÉMIA KONYVTÁRA

	Ikaina cao	Miercrius 3
218, 10		t = 14, 4-09
10 - 2/8, 10	718,08 718,10	
		902
		12
		22.
65, 98	66,00 66,00	
38,68	38,08 38,08	t=19,7-0,4
	Il name coo	
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	186, 28 186, 28	
9/-		
		3,4
99, 92	99,92 99,92	159,94, 159,94 159,94
	76,34 76,34	92
, 26,34		12
	III bain cso	7-14,8-0,4
	170, 40 170, 40	
8 - 70, 40	170, 40 170, 20	70,40
	6 148,10 148,12 1	
147, 9	6 148,10 148,12	86
1 - 30, 34	2 30, 54 30,54 30,	5.v t=14, 9-0,4

I kanni cro

2 - 56, 78 56, 30 56,30

t=15,0-0,4

I ramin' cso

5 - 96, 30 96,80 96,82

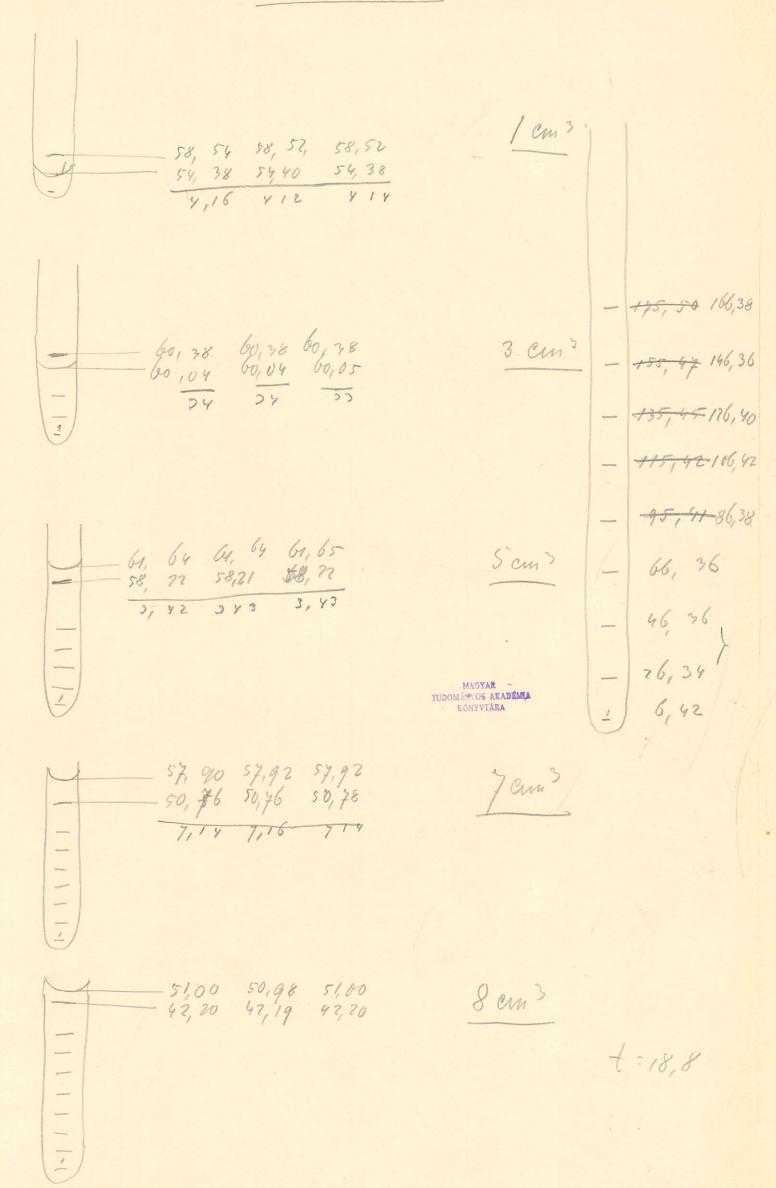
t=15,0-0,4

III rami cso

7 93,74 93,74 93,74

t=1511-0,4

eving kitegorie 14°6. és 100° ho sinta I t₁₈₆ = 180,01 l 100 = 180,20


II lix,6 = 159,94 livo = 160,12 18002

III lin6 = 139,84 lin = 139,94 100722

1 sammi esi 253, 38 253,38 lough hereronnesser 100, 1 93, 26 10,19 Il namm ise 186,66 186,64 186,62 111 92 111, 92 111, 94 homi hermander. 100, 5 5, 34 5, 34 -49, 44) 46, 44 46, 44 20 III. nami cse" Tup. 100°8 162,26 162,24 142,62 1862 18,62 162,26 143,62 18,64

I nami eso Alwhalon \$ = 0,797. berne 1 cm3 alkohol 53,68 53,70 1 cm3 almobal 53, 66 48, 18 ,48,18 48 16 5,52 5-50 177,97 57, 14 54, 12 53, 90 53,90 57, 12 53,88 3 cm3 alkakul 15999 2, 24 3,22 138,0 118,02 6 98,02 5 cm 3 alkohol 58,30 58, 28 58, 28 78,01 57, 30 57, 30 57, 30 0,98 1,0 98 38,03 3 17,99 56, 48 56, 50 56, 48 1)-2,11 7 cm 3 arrobal 1 20 1 16 1 18 56,06 5-6,26 & cin 3 ally 56, 62 56, 52 56,52 56,40 24,26 54,26 54, 22 54, 23 54,22 54,21 2/10 2,10 1=18,0

Il zami cso

I nammi cso 1 cm3 acrobal 6,38 6,36 6,38

Il Rami Esé

/ cm 3 ountal 54, 83 54, 84 4,09 408 12,51 61,84 3 cm 3 60,76 60,26 60, 28 1,58 1,58 102,66 102, 66 102, 64 San 3 101,68 101, 68 101,66 163, 86 163,86 0,98 0,98 164, 08 164,08 0,98 143, 80 143,78 58,76 123, 79 123,78 58, 26 54, 78 54.78 54, 80 3 48 103 89 103,78 MAGYAR
TUDOMÁNIOS AKADÉMA
E KÖNYVTÁRA 83 90 83,82 84, 08 84,03 12,48 63 90 63,83 23, 94 23,94 20,04 20,04 20 06 20,08 20,05 20 01 20,02 20,00 20,02 20,04 19 90 19,99 20,00 19198 20107 19.99 19198 20,00 19196 19,97 20 00 19,96 19199 20,02 19197 20,00 19199 19,99 19,94 20,02 19,96 19.98 19199 20,00 20,01

mamin 4. arry eter pyremben. 100 Jehote Nemonte 190° nis egissen søpre vilise (mig num kritikum) Teg. 150,5. -182,0 meinghus myrong ! Köpl I mim. 2 - 41,76 41,70 41,7,6. III nami eso" 192,28 192,26 192,52 185,58 185,63 186,0 197,56 197,3 172 36 172,30 171,98

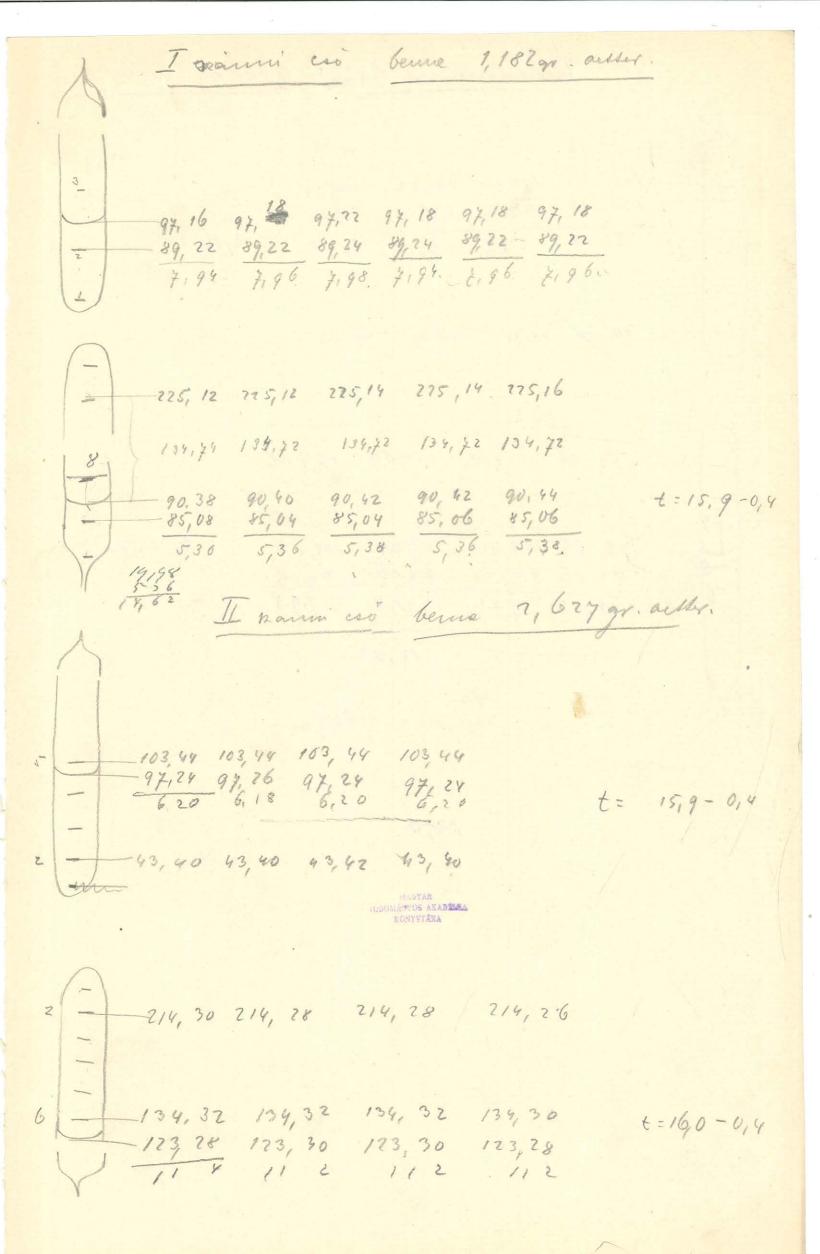
I coi letuto e Lenguerson - by " C. Menicus 498 35,24 Lemp. - 78° E mensions 495 herry - 74° C merricus 481 MAGYAR TUDOMÁ**OS AKADÉMA KONYVIÁRA

3. Inami cso" = 27,163 gr Wy cro Suffal 8,8 9,05 11,0 10,1 Merger 77, 16 gr 9,0 9,2 10,2 10,0 10,85 9,2 9,4 10,05 9,00 9,22 1985 - 9,98 - Spring 7 nouver coo = 75,990 Ungen Liftal -12,4 12,3 12,0 merlyen 75, 99081. 10,3 12,20 10,5 10,5 10,35 27,47 = 11, 24 : Genry Support 27, 47 - 1121 - Eyery 76,00 gr 9,9 15,0 0,03 = 0,02 10,4 14, 60 11,0 10,93 2 1/20 Olgo = 1, 3 oursprin FUDOMANOS AKADINAS/ 2 8 KONYYTĀRA

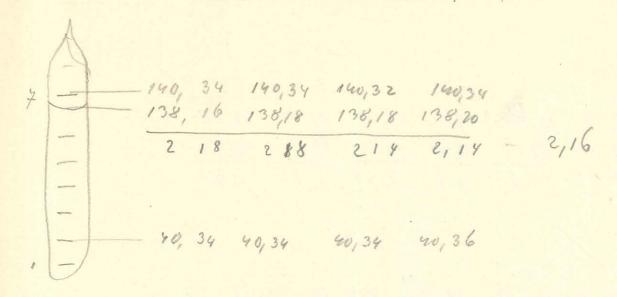
3 cos suja - 24, 163 gr. 2 csa suja = 25,990 1. cso suja = 36,517

I name eso + neller = 37,699 gr hylal. My in walter 10,1 11,2 12,0 Muslyen : 37, 70 gr. 10,2 11,15 11,50 21,32 = 10,66 . 0, 16 = 91 9,6 9,20 24,00-10,50 Il coi + ailler, = 28, 617 m. Nuyer + aith 10,6 9,9 12,8 13,4 merge : 78, 62 gr. 10,2 10,9 12,6 13,1 12,70 10,4 11,1 70,87 10,14 2 = 1204 27,89 11,44 $\frac{0.37}{7.3} = 0.3$

> I con = 37,699 31. I con = 36,514 1,182 595.


I cooker author: 1, 187 gr.

II cooker " = 2,627 gr.


III cooker author: 4, 184 gr.

1433 8,67 32 anni csv suja = 35,559 Luffal 7,9 9,6 8,1 9,4 7,63 8,64: Sup Brana cso'+ ausser Hours 12,0 Mirigen 39, 74 11,0 27,68 11,34 27,00 - 11,00 0,34 = 0,3 39,743

39,743 35,559 4,184 - auther surfa.

Il name est benne 4,184 gr. aeller.

154,06 154,06 154,06 154,06 08,00 7,98. 7158 7,98 08,00 7,98. 7158 7,98 12,02.

Lyngomes: 750,9 mm.

t=15,8-0,4